
�

AppleScript Language Guide
English Dialect

� Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States
of America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo (Option-
Shift-K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition
in violation of federal and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk,
HyperCard, HyperTalk, LaserWriter,
and Macintosh are trademarks of
Apple Computer, Inc., registered
in the United States and other
countries.
AppleScript, Finder, Geneva
and System 7 are trademarks of
Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.
FileMaker is a registered trademark
of Claris Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Microsoft is a registered trademark
of Microsoft Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manuals distributed with an Apple
product, Apple will replace the manuals
at no charge to you, provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
manuals for as long as the software is
included in Apple’s Media Exchange
program. See your authorized Apple
dealer for program coverage and details.
In some countries the replacement
period may be different; check with
your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTA-
BILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY, MERCHANTA-
BILITY, OR FITNESS FOR A PARTIC-
ULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Figures and Tables xiii

Preface About This Guide xv

Audience xv
Organization of This Guide xvi
Sample Applications and Scripts xvii
For More Information xviii

Getting Started xviii
Scripting Additions xviii
Other AppleScript Dialects xviii
Scriptable Applications xviii

Conventions Used in This Guide xix

Part 1 Introducing AppleScript 1

Chapter 1 AppleScript, Scripts, and Scriptable Applications 3

What Is AppleScript? 3
What Can You Do With Scripts? 5

Automating Activities 5
Integrating Applications 7
Customizing Applications 7

Who Runs Scripts, and Who Writes Them? 9
Special Features of AppleScript 10
What Applications Are Scriptable? 11

iv

Chapter 2 Overview of AppleScript 13

How Does AppleScript Work? 14
Statements 14
Commands and Objects 17
Dictionaries 18
Values 20
Expressions 21

Operations 21
Variables 22

Script Objects 23
Scripting Additions 23
Dialects 24
Other Features and Language Elements 24

Continuation Characters 25
Comments 26
Identifiers 27
Case Sensitivity 28
Abbreviations 29
Compiling Scripts With the Script Editor 30

Part 2 AppleScript Language Reference 31

Chapter 3 Values 33

Using Value Class Definitions 33
Literal Expressions 36
Properties 36
Elements 37
Operators 37
Commands Handled 37
Reference Forms 38
Coercions Supported 38

v

Value Class Definitions 38
Boolean 40
Class 41
Constant 42
Data 43
Date 43
Integer 47
List 48
Number 52
Real 53
Record 54
Reference 57
String 60
Styled Text 64
Text 66

Coercing Values 67

Chapter 4 Commands 71

Types of Commands 71
Application Commands 72
AppleScript Commands 73
Scripting Addition Commands 74
User-Defined Commands 76

Using Command Definitions 77
Syntax 78
Parameters 78
Result 79
Examples 79
Errors 79

Using Parameters 80
Parameters That Specify Locations 80
Coercion of Parameters 81
Raw Data in Parameters 81

Using Results 82
Double Angle Brackets in Results and Scripts 83

vi

Command Definitions 84
Close 87
Copy 88
Count 92
Data Size 97
Delete 98
Duplicate 99
Exists 99
Get 100
Launch 103
Make 105
Move 106
Open 107
Print 108
Quit 109
Run 110
Save 112
Set 113

Chapter 5 Objects and References 119

Using Object Class Definitions 119
Properties 120
Element Classes 120
Commands Handled 120
Default Value Class Returned 122

References 122
Containers 123
Complete and Partial References 124

Reference Forms 125
Arbitrary Element 126
Every Element 127
Filter 129
ID 130
Index 131
Middle Element 133

vii

Name 134
Property 135
Range 136
Relative 139

Using the Filter Reference Form 140
References to Files and Applications 143

References to Files 144
References to Applications 146

References to Local Applications 147
References to Remote Applications 148

Chapter 6 Expressions 149

Results of Expressions 149
Variables 150

Creating Variables 150
Using Variables 152
The “A Reference To” Operator 153
Data Sharing 154
Scope of Variables 155
Predefined Variables 156

Script Properties 156
Defining Script Properties 157
Using Script Properties 157
Scope of Script Properties 158

AppleScript Properties 158
Text Item Delimiters 158

Reference Expressions 160
Operations 161

Operators That Handle Operands of Various Classes 168
Equal, Is Not Equal To 168
Greater Than, Less Than 172
Starts With, Ends With 173
Contains, Is Contained By 175
Concatenation 177

Operator Precedence 178
Date-Time Arithmetic 180

viii

Chapter 7 Control Statements 183

Characteristics of Control Statements 184
Tell Statements 185

Tell (Simple Statement) 188
Tell (Compound Statement) 189

If Statements 190
If (Simple Statement) 192
If (Compound Statement) 193

Repeat Statements 194
Repeat (forever) 197
Repeat (number) Times 198
Repeat While 199
Repeat Until 200
Repeat With (loopVariable) From (startValue) To (stopValue) 201
Repeat With (loopVariable) In (list) 202
Exit 204

Try Statements 204
Kinds of Errors 205
How Errors Are Handled 206
Writing a Try Statement 206

Try 207
Signaling Errors in Scripts 210

Error 210
Considering and Ignoring Statements 213

Considering/Ignoring 214
With Timeout Statements 217

With Timeout 218
With Transaction Statements 219

With Transaction 219

Chapter 8 Handlers 221

Using Subroutines 221
Types of Subroutines 223
Scope of Subroutine Calls in Tell Statements 224
Checking the Classes of Subroutine Parameters 225

ix

Recursive Subroutines 225
Saving and Loading Libraries of Subroutines 226

Subroutine Definitions and Calls 228
Subroutines With Labeled Parameters 229

Subroutine Definition, Labeled Parameters 229
Subroutine Call, Labeled Parameters 230
Examples of Subroutines With Labeled Parameters 232

Subroutines With Positional Parameters 235
Subroutine Definition, Positional Parameters 235
Subroutine Call, Positional Parameters 236
Examples of Subroutines With Positional Parameters 238

The Return Statement 239
Return 240

Command Handlers 241
Command Handler Definition 241

Command Handlers for Script Applications 243
Run Handlers 243
Open Handlers 246
Handlers for Stay-Open Script Applications 247

Idle Handlers 248
Quit Handlers 249
Interrupting a Script Application’s Handlers 250

Calling a Script Application 251
Scope of Script Variables and Properties 252

Scope of Properties and Variables Declared at the Top Level
of a Script 254

Scope of Properties and Variables Declared in a Script Object 258
Scope of Variables Declared in a Handler 263

Chapter 9 Script Objects 265

About Script Objects 265
Defining Script Objects 267
Sending Commands to Script Objects 268
Initializing Script Objects 269
Inheritance and Delegation 271

x

Defining Inheritance 271
How Inheritance Works 272
The Continue Statement 277
Using Continue Statements to Pass Commands to Applications 280
The Parent Property and the Current Application 281

Using the Copy and Set Commands With Script Objects 283

Appendix A The Language at a Glance 289

Commands 289
References 294
Operators 296
Control Statements 299
Handlers 301
Script Objects 303
Variable and Property Assignments and Declarations 303
Predefined Variables 304
Constants 305
Placeholders 307

Appendix B Scriptable Text Editor Dictionary 313

About Text Objects 313
Elements of Text Objects 314
Special Properties of Scriptable Text Editor Text Objects 314
Text Styles 315
AppleScript and Non-Roman Script Systems 317

Scriptable Text Editor Object Class Definitions 318
Application 318
Character 321
Document/Window 323
File 328
Insertion Point 329
Paragraph 331
Selection 334
Text 336

xi

Text Item 339
Text Style Info 341
Window 342
Word 342

Scriptable Text Editor Commands 345
Copy 347
Cut 348
Data Size 349
Duplicate 349
Make 350
Move 351
Open 351
Paste 351
Revert 352
Save 353
Select 354

Scriptable Text Editor Errors 355

Appendix C Error Messages 357

Operating System Errors 358
Apple Event Errors 359
Apple Event Registry Errors 361
AppleScript Errors 362

Glossary 363

Index 371

xiii

Figures and Tables

Chapter 1 AppleScript, Scripts, and Scriptable Applications 3

Figure 1-1 Changing text style with the mouse and with a script 4
Figure 1-2 A script that performs a repetitive action 6
Figure 1-3 A script that copies information from one application to another 8
Figure 1-4 Different ways to run a script 9

Chapter 2 Overview of AppleScript 13

Figure 2-1 How AppleScript works 15
Figure 2-2 How AppleScript gets the Scriptable Text Editor dictionary 20

Chapter 3 Values 33

Figure 3-1 Value class definition for lists 34
Figure 3-2 Coercions supported by AppleScript 69

Table 3-1 AppleScript value class identifiers 39

Chapter 4 Commands 71

Figure 4-1 Command definition for the Move command 77
Figure 4-2 The Scriptable Text Editor document “simple” 95

Table 4-1 Standard application commands defined in this chapter 85
Table 4-2 AppleScript commands defined in this chapter 86

Chapter 5 Objects and References 119

Figure 5-1 The Scriptable Text Editor’s object class definition for
paragraph objects 121

Figure 5-2 The Scriptable Text Editor document “simple” 137

Table 5-1 Reference forms 126
Table 5-2 Boolean expressions and tests in Filter references 142

xiv

Chapter 6 Expressions 149

Table 6-1 AppleScript operators 163
Table 6-2 Operator precedence 179

Chapter 8 Handlers 221

Figure 8-1 Scope of property and variable declarations at the top level
of a script 254

Figure 8-2 Scope of property and variable declarations at the top level
of a script object 258

Figure 8-3 Scope of variable declarations within a handler 263

Chapter 9 Script Objects 265

Figure 9-1 Relationship between a simple child script and its parent 273
Figure 9-2 Another child-parent relationship 273
Figure 9-3 A more complicated child-parent relationship 274

Appendix A The Language at a Glance 289

Table A-1 Command syntax 290
Table A-2 Reference form syntax 294
Table A-3 Container notation in references 296
Table A-4 Operators 297
Table A-5 Control statements 300
Table A-6 Handler definitions and calls 302
Table A-7 Script objects 303
Table A-8 Assignments and declarations 304
Table A-9 Predefined variables 305
Table A-10 Constants defined by AppleScript 305
Table A-11 Placeholders used in syntax descriptions 308

Appendix B Scriptable Text Editor Dictionary 313

Figure B-1 Bounds and Position properties of a Scriptable Text Editor
window 327

Table B-1 Variations from standard behavior in Scriptable Text Editor versions
of standard application commands 345

Table B-2 Other Scriptable Text Editor commands 347

xv

P R E F A C E

About This Guide

The AppleScript Language Guide: English Dialect is a complete guide to the
English dialect of the AppleScript language. AppleScript allows you to create
sets of written instructions—known as scripts—to automate and customize
your applications.

Audience 0

This guide is for anyone who wants to write new scripts or modify
existing scripts.

Before using this guide, you should read Getting Started With AppleScript to
learn what hardware and software you need to use AppleScript; how to install
AppleScript; and how to run, record, and edit scripts.

To make best use of this guide, you should already be familiar with at least one
of the following:

■ another scripting language (such as HyperTalk, the scripting language for
HyperCard, or a scripting language for a specific application)

■ a computer programming language (such as BASIC, Pascal, or C)

■ a macro language (such as a language used to manipulate spreadsheets)

If you’re not already familiar with the basics of scripting and programming
(such as variables, subroutines, and conditional statements such as If-Then),
you may want additional information to help you get started. You can find a
variety of introductory books on scripting and programming—including books
specifically about AppleScript—in many bookstores.

Macintosh software developers who want to create scriptable and recordable
applications should refer to Inside Macintosh: Interapplication Communication.

xvi

P R E F A C E

Organization of This Guide 0

This guide is divided into two parts:

■ Part 1, “Introducing AppleScript,” provides an overview of the AppleScript
language and the tasks you can perform with it.

■ Part 2, “AppleScript Language Reference,” provides reference descriptions
of all of the features of the AppleScript language.

Part 1 contains these chapters:

■ Chapter 1, “AppleScript, Scripts, and Scriptable Applications,” introduces
AppleScript and its capabilities.

■ Chapter 2, “Overview of AppleScript,” provides an overview of the
elements of the AppleScript language.

Part 2 contains the following chapters:

■ Chapter 3, “Values,” describes the classes of data that can be stored and
manipulated in scripts and the coercions you can use to change a value
from one class to another.

■ Chapter 4, “Commands,” describes the types of commands available in
AppleScript, including application commands, AppleScript commands,
scripting addition commands, and user-defined commands. It also includes
descriptions of all AppleScript commands and standard application
commands.

■ Chapter 5, “Objects and References,” describes objects and their
characteristics and explains how to refer to objects in scripts.

■ Chapter 6, “Expressions,” describes types of expressions in AppleScript,
how AppleScript evaluates expressions, and operators you use to
manipulate values.

xvii

P R E F A C E

■ Chapter 7, “Control Statements,” describes statements that control when and
how other statements are executed. It includes information about Tell, If,
and Repeat statements.

■ Chapter 8, “Handlers,” describes subroutines, command handlers, error
handlers, and the scope of variables and properties in handlers and
elsewhere in a script. It includes the syntax for defining and calling
subroutines and error handlers.

■ Chapter 9, “Script Objects,” describes how to define and use script objects. It
includes information about object-oriented programming techniques such as
using inheritance and delegation to define groups of related objects.

At the end of the guide are three appendixes, a glossary of AppleScript terms,
and an index.

■ Appendix A, “The Language at a Glance,” is a collection of tables that
summarize the features of the AppleScript language. It is especially useful
for experienced programmers who want a quick overview of the language.

■ Appendix B, “Scriptable Text Editor Dictionary,” defines the words in the
AppleScript language that are understood by the Scriptable Text Editor
sample application.

■ Appendix C, “Error Messages,” lists the error messages returned
by AppleScript.

Sample Applications and Scripts 0

A sample application, the Scriptable Text Editor, is included with AppleScript.
The Scriptable Text Editor is scriptable; that is, it understands scripts written in
the AppleScript language. It also supports recording of scripts: when you use
the Record button in the Script Editor (the application you use to write and
modify scripts), the actions you perform in the Scriptable Text Editor generate
AppleScript statements for performing those actions. Scripts for performing
tasks in the Scriptable Text Editor are used as examples throughout this guide.

xviii

P R E F A C E

For More Information 0

Getting Started 0

See the companion book Getting Started With AppleScript to learn what
hardware and software you need to use AppleScript; how to install
AppleScript; and how to run, record, and edit scripts.

Scripting Additions 0

Scripting additions are files that provide additional commands you can use in
scripts. A standard set of scripting additions comes with AppleScript. Scripting
additions are also sold commercially, included with applications, and
distributed through electronic bulletin boards and user groups.

For information about using the scripting additions that come with AppleScript,
see the companion book AppleScript Scripting Additions Guide: English Dialect.

Other AppleScript Dialects 0

A dialect is a version of the AppleScript language that resembles a particular
language. This guide describes the English dialect of AppleScript (also
called AppleScript English). This dialect uses words taken from the English
language and has an English-like syntax. Other dialects can use words from
other human languages, such as Japanese, and have a syntax that resembles
a specific human language or programming language.

For information about a specific dialect, see the version of the AppleScript
Language Guide for that dialect.

Scriptable Applications 0

Not all applications are scriptable. The advertising and packaging for an
application usually mention if it is scriptable. The documentation for a
scriptable application typically lists the AppleScript words that the application
understands.

xix

P R E F A C E

Conventions Used in This Guide 0

Words and sample scripts in monospaced font are AppleScript language
elements that must be typed exactly as shown. Terms are shown in boldface
where they are defined. You can also find these definitions in the glossary.

Here are some additional conventions used in syntax descriptions:

language element

Plain computer font indicates an element that you
must type exactly as shown. If there are special symbols
(for example, + or &), you must also type them exactly
as shown.

placeholder Italic text indicates a placeholder that you must replace
with an appropriate value. (In some programming
languages, placeholders are called nonterminals.)

[optional] Brackets indicate that the enclosed language element or
elements are optional.

(a group) Parentheses group together elements. If parentheses are
part of the syntax, they are shown in bold.

[optional]... Three ellipsis points (. . .) after a group defined by
brackets indicate that you can repeat the group of
elements within brackets 0 or more times.

(a group). . . Three ellipsis points (. . .) after a group defined by
parentheses indicate that you can repeat the group
of elements within parentheses one or more times.

a | b | c Vertical bars separate elements in a group from which
you must choose a single element. The elements are
often grouped within parentheses or brackets.

P A R T O N E

Introducing AppleScript 1

What Is AppleScript? 3

C H A P T E R 1

AppleScript, Scripts, and
Scriptable Applications 1

Figure 1-0
Listing 1-0
Table 1-0

This chapter introduces the AppleScript scripting language. It answers
these questions:

■ What is AppleScript?

■ What are scripts?

■ Who runs scripts, and who writes them?

■ How is AppleScript different from other scripting mechanisms?

■ What can you do with scripts?

■ What applications are scriptable?

What Is AppleScript? 1

AppleScript is a scripting language that allows you to control Macintosh
computers without using the keyboard or mouse. AppleScript lets you use
series of written instructions, known as scripts, to control applications and the
desktop. Figure 1-1 shows the difference between changing the text style of a
paragraph with the mouse and performing the same task with a script.

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

4 What Is AppleScript?

Figure 1-1 Changing text style with the mouse and with a script

Changing the style of text with the mouse

Changing the style of text with a script

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

What Can You Do With Scripts? 5

The script shown at the bottom of Figure 1-1 is written in AppleScript English,
which is a dialect of the AppleScript scripting language that resembles English.
This guide describes AppleScript English and how you can use it to write
scripts. Other dialects, such as AppleScript Japanese and AppleScript French,
are designed to resemble other human languages. Still others, such as the
Programmer’s Dialect, resemble other programming languages. For informa-
tion about dialects other than AppleScript English, see the guide for the dialect
you want to use. For information about installing dialects, see Getting Started
With AppleScript.

All AppleScript dialects share many features with other scripting, programming,
and macro languages. If you’ve used any of these languages, you’ll find
AppleScript dialects very easy to learn and use.

AppleScript comes with an application called Script Editor that you can use to
create and modify scripts. You can also use Script Editor to translate scripts
from one AppleScript dialect to another.

What Can You Do With Scripts? 1

AppleScript lets you automate, integrate, and customize applications. The
following sections provide examples.

Automating Activities 1

Scripts make it easy to perform repetitive tasks. For example, if you want
to change the style of the word “AppleScript” to bold throughout a document
named Introduction, you can write a script that does the job instead of
searching for each occurrence of the word, selecting it, and changing it from
the Style menu.

Figure 1-2 shows the script and what happens when you run it.

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

6 What Can You Do With Scripts?

Figure 1-2 A script that performs a repetitive action

Introduction before running script

Make AppleScript Bold script

Introduction after running script

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

What Can You Do With Scripts? 7

Integrating Applications 1

Scripts are ideal for performing tasks that involve more than one application.
A script can send instructions to one application, get the resulting data, and
then pass the data on to one or more additional applications. For example, a
script can collect information from a database application and copy it to a
spreadsheet application. Figure 1-3 shows a simple script that gets a value
from the Count cell of an inventory database and copies it to the Inventory
column of a spreadsheet.

In the same way, a script can use one application to perform an action on data
from another application. For example, suppose a word-processing application
includes a spelling checker and also supports an AppleScript command to
check spelling. You can check the spelling of a block of text from any other
application by writing a script that sends the AppleScript command and the
text to be checked to the word-processing application, which returns the results
to the application that runs the script.

If an action performed by an application can be controlled by a script, that
action can be also performed from the Script Editor or from any other
application that can run scripts. Every scriptable application is potentially a
toolkit of useful utilities that can be selectively combined with utilities from
other scriptable applications to perform highly specialized tasks.

Customizing Applications 1

Scripts can add new features to applications. To customize an application, you
add a script that is triggered by a particular action within the application, such
as choosing a menu item or clicking a button. Whether you can add scripts to
applications is up to each application, as are the ways you associate scripts
with specific actions.

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

8 What Can You Do With Scripts?

Figure 1-3 A script that copies information from one application to another

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

Who Runs Scripts, and Who Writes Them? 9

Who Runs Scripts, and Who Writes Them? 1

To run a script is to cause the actions the script describes to be performed.
Everyone who uses a Macintosh computer can run scripts. Figure 1-4 illustrates
two ways to run a script.

Figure 1-4 Different ways to run a script

If the script is a script application on the desktop, you can run it by double-
clicking its icon. You can also run any script by clicking the Run button in the
Script Editor window for that script.

Double-clicking a script application’s icon

Clicking the Run button

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

10 Special Features of AppleScript

Although everyone can run scripts, not everyone needs to write them. One
person who is familiar with a scripting language can create sophisticated
scripts that many people can use. For example, management information
specialists in a business can write scripts for everyone in the business to use.
Scripts are also sold commercially, included with applications, and distributed
through electronic bulletin boards and user groups.

Special Features of AppleScript 1

AppleScript has a number of features that set it apart from both macro
programs and scripting languages that control a single program:

■ AppleScript makes it easy to refer to data within applications. Scripts can
use familiar names to refer to familiar objects. For example, a script can refer
to paragraph, word, and character objects in a word-processing document
and to row, column, and cell objects in a spreadsheet.

■ You can control several applications from a single script. Although many
applications include built-in scripting or macro languages, most of these
languages work for only one application. In contrast, you can use AppleScript
to control any of the applications that support it. You don’t have to learn a
new language for each application.

■ You can write scripts that control applications on more than one computer. A
single script can control any number of applications, and the applications
can be on any computer on a given network.

■ You can create scripts by recording. The Script Editor application includes a
recording mechanism that takes much of the work out of creating scripts.
When recording is turned on, you can perform actions in a recordable
application and the Script Editor creates corresponding instructions in the
AppleScript language. To learn how to turn recording on and off, refer to
Getting Started With AppleScript.

■ AppleScript supports multiple dialects, or representations of the AppleScript
language that resemble various human languages and programming
languages. This guide describes the AppleScript English dialect. You can use
Script Editor to convert a script from one dialect to another without
changing what happens when you run the script.

C H A P T E R 1

AppleScript, Scripts, and Scriptable Applications

What Applications Are Scriptable? 11

What Applications Are Scriptable? 1

Applications that understand one or more AppleScript commands are called
scriptable applications. Not all applications are scriptable. The advertising
and packaging for an application usually mention if it is scriptable. The
documentation for a scriptable application typically lists the AppleScript words
that the application understands.

Some scriptable applications are also recordable. For every significant action
you can perform in a recordable application, the Script Editor can record a
series of corresponding instructions in the AppleScript language. With
recordable applications, you can create a script simply by performing actions
in the application.

Finally, some scriptable applications are also attachable. An attachable applica-
tion is one that can be customized by attaching scripts to specific objects in the
application, such as buttons and menu items. These scripts are triggered by
specific user actions, such as choosing a menu item or clicking a button.

13

C H A P T E R 2

Overview of AppleScript 2Figure 2-0
Listing 2-0
Table 2-0

AppleScript is a dynamic, object-oriented script language. At its heart is the
ability to send commands to objects in many different applications. These
objects, which are familiar items such as words or paragraphs in a text-editing
application or shapes in a drawing application, respond to commands by
performing actions. AppleScript determines dynamically—that is, whenever
necessary—which objects and commands an application recognizes based on
information it obtains from each scriptable application.

In addition to manipulating objects in other applications, AppleScript can store
and manipulate its own data, called values. Values are simple data structures,
such as character strings and real numbers, that can be represented in scripts
and manipulated with operators. Values can be obtained from applications or
created in scripts.

The building blocks of scripts are statements. When you write a script, you
compose statements that describe the actions you want to perform. AppleScript
includes several kinds of statements that allow you to control when and how
statements are executed. These include If statements for conditional execution,
Repeat statements for statements that are repeated, and handler definitions for
creating user-defined commands.

This chapter provides an overview of AppleScript. It includes a summary of
how AppleScript works and brief descriptions of the AppleScript language
elements. Part 2 of this book, “AppleScript Language Reference,” describes the
elements of the AppleScript language in more detail.

C H A P T E R 2

Overview of AppleScript

14 How Does AppleScript Work?

How Does AppleScript Work? 2

AppleScript works by sending messages, called Apple events, to applications.
When you write a script, you write one or more groups of instructions called
statements. When you run the script, the Script Editor sends these statements
to the AppleScript extension, which interprets the statements and sends Apple
events to the appropriate applications. Figure 2-1 shows the relationship
between the Script Editor, the AppleScript extension, and the application.

The parts that you use—the Script Editor and the application—are shown to
the left of the dotted line in Figure 2-1. The parts that work behind the scenes—
the AppleScript extension and Apple events—are shown to the right of the
dotted line.

Applications respond to Apple events by performing actions, such as changing
a text style, getting a value, or opening a document. Applications can also
send Apple events back to the AppleScript extension to report results. The
AppleScript extension sends the final results to the Script Editor, where they
are displayed in the result window.

When you write scripts, you needn’t be concerned about Apple events or the
AppleScript extension. All you need to know is how to use the AppleScript
language to request the actions or results that you want.

Statements 2

Every script is a series of statements. Statements are structures similar to
sentences in human languages that contain instructions for AppleScript to
perform. When AppleScript runs a script, it reads the statements in order and
carries out their instructions. Some statements cause AppleScript to skip or
repeat certain instructions or change the way it performs certain tasks. These
statements, which are described in Chapter 7, are called control statements.

C H A P T E R 2

Overview of AppleScript

Statements 15

Figure 2-1 How AppleScript works

Script Editor
Writes, records, and runs scripts

AppleScript extension

Application
• Responds to Apple events by performing actions
• Sends Apple events to AppleScript extension

1

4

3

2

Apple events
(results)

Apple events
(requests for action)

• Interprets script statements and
 sends corresponding Apple events
• Interprets Apple events and sends
 results back to the Script Editor

AppleScript
statements

(results)

C H A P T E R 2

Overview of AppleScript

16 Statements

All statements, including control statements, fall into one of two categories:
simple statements or compound statements. Simple statements are statements
such as the following that are written on a single line.

tell application "Scriptable Text Editor" to print the front window

Compound statements are statements that are written on more than one line
and contain other statements. All compound statements have two things in
common: they can contain any number of statements, and they have the word
end (followed, optionally, by the first word of the statement) as their last line.
The simple statement of the first example in this section is equivalent to the
following compound statement.

tell application "Scriptable Text Editor"

print the front window

end tell

The compound Tell statement includes the lines tell application
"Scriptable Text Editor" and end tell, and all statements between
these two lines.

A compound statement can contain any number of statements. For example,
here is a Tell statement that contains two statements:

tell application "Scriptable Text Editor"

print front window

close front window

end tell

This example illustrates the advantage of using a compound Tell statement:
you can add additional statements within a compound statement.

Note
Notice that this example contains the statement print
front window instead of print the front window.
AppleScript allows you to add or remove the word the
anywhere in a script without changing the meaning of the
script. You can use the word the to make your statements
more English-like and therefore more readable. ◆

C H A P T E R 2

Overview of AppleScript

Commands and Objects 17

Here’s another example of a compound statement:

if the number of windows is greater than 0 then

print front window

end if

Statements contained in a compound statement can themselves be compound
statements. Here’s an example:

tell application "Scriptable Text Editor"

if the number of windows is greater than 0 then

print front window

end if

end tell

Commands and Objects 2

Commands are the words or phrases you use in AppleScript statements to
request actions or results. Every command is directed at a target, which is
the object that responds to the command. The target of a command is usually
an application object. Application objects are objects that belong to an
application, such as windows, or objects in documents, such as the words
and paragraphs in a text document. Each application object has specific
information associated with it and can respond to specific commands.

For example, in the Scriptable Text Editor, window objects understand the Print
command. The following example shows how to use the Print command to
request that the Scriptable Text Editor print the front window.

tell application "Scriptable Text Editor"

print front window

end tell

The Print command is contained within a Tell statement. Tell statements
specify default targets for the commands they contain. The default target is the
object that receives commands if no other object is specified or if the object is

C H A P T E R 2

Overview of AppleScript

18 Dictionaries

specified incompletely in the command. In this case, the statement containing
the Print statement does not contain enough information to uniquely identify
the window object, so AppleScript uses the application name listed in the Tell
statement to determine which object receives the Print command.

In AppleScript, you use references to identify objects. A reference is a
compound name, similar to a pathname or address, that specifies an object.
For example, the following phrase is a reference:

front window of application "Scriptable Text Editor"

This phrase specifies a window object that belongs to a specific application.
(The application itself is also an object.) AppleScript has different types of
references that allow you to specify objects in many different ways. You’ll learn
more about references in Chapter 5, “Objects and References.”

Objects can contain other objects, called elements. In the previous example, the
front window is an element of the Scriptable Text Editor application object.
Similarly, in the next example, a word element is contained in a specific
paragraph element, which is contained in a specific document.

word 1 of paragraph 3 of document "Try This"

Every object belongs to an object class, which is simply a name for objects with
similar characteristics. Among the characteristics that are the same for the
objects in a class are the commands that can act on the objects and the elements
they can contain. An example of an object class is the Document object class in
the Scriptable Text Editor. Every document created by the Script Editor belongs
to the Document object class. The Script Editor’s definition of the document
object class determines which classes of elements, such as paragraphs and
words, a document object can contain. The definition also determines which
commands, such as the Close command, a document object can respond to.

Dictionaries 2

To examine a definition of an object class, a command, or some other word
supported by an application, you can open that application’s dictionary from
the Script Editor. A dictionary is a set of definitions for words that are
understood by a particular application. Unlike other scripting languages,

C H A P T E R 2

Overview of AppleScript

Dictionaries 19

AppleScript does not have a single fixed set of definitions for use with all
applications. Instead, when you write scripts in AppleScript, you use both
definitions provided by AppleScript and definitions provided by individual
applications to suit their capabilities.

Dictionaries tell you which objects are available in a particular application and
which commands you can use to control them. Typically, the documentation
for a scriptable application includes a complete list of the words in its
dictionary. For example, Appendix B of this book contains a complete list of the
words in the Scriptable Text Editor dictionary. In addition, if you are using the
Script Editor, you can view the list of commands and objects for a particular
application in a Dictionary window. For more information, see Getting Started
With AppleScript.

To use the words from an application’s dictionary in a script, you must indicate
which application you want to manipulate. You can do this with a Tell
statement that lists the name of the application:

tell application "Scriptable Text Editor"

print front window

close front window

end tell

AppleScript reads the words in the application’s dictionary at the beginning
of the Tell statement and uses them to interpret the statements in the Tell
statement. For example, AppleScript uses the words in the Scriptable Text
Editor dictionary to interpret the Print and Close commands in the Tell
statement shown in the example.

Another way to use an application’s dictionary is to specify the application
name completely in a simple statement:

print front window of application "Scriptable Text Editor"

In this case, AppleScript uses the words in the Scriptable Text Editor dictionary
to interpret the words in this statement only.

When you use a Tell statement or specify an application name completely in
a statement, the AppleScript extension gets the dictionary resource for the
application and reads its dictionary of commands, objects, and other words.
Every scriptable application has a dictionary resource that defines the
commands, objects, and other words script writers can use in scripts to control

C H A P T E R 2

Overview of AppleScript

20 Values

the application. Figure 2-2 shows how AppleScript gets the words in the
Scriptable Text Editor’s dictionary.

Figure 2-2 How AppleScript gets the Scriptable Text Editor dictionary

In addition to the terms defined in application dictionaries, the AppleScript
English dialect includes its own standard terms. Unlike the terms in applica-
tion dictionaries, the standard AppleScript terms are always available. You can
use these terms (such as If, Tell, and First) anywhere in a script. This manual
describes the standard terms provided by the AppleScript English dialect.

The words in system and application dictionaries are known as reserved
words. When defining new words for your script—such as identifiers for
variables—you cannot use reserved words.

Values 2

A value is a simple data structure that can be represented, stored, and
manipulated within AppleScript. AppleScript recognizes many types of values,
including character strings, real numbers, integers, lists, and dates. Values are
fundamentally different from application objects, which can be manipulated
from AppleScript, but are contained in applications or their documents. Values
can be created in scripts or returned as results of commands sent to applications.

Scriptable Text Editor
application

Dictionary
resource

AppleScript
extension

Commands:

Objects:

cut
make
print
...

character
paragraph
window
...

Dictionary of
commands
and objects

C H A P T E R 2

Overview of AppleScript

Expressions 21

Values are an important means of exchanging data in AppleScript. When you
request information about application objects, it is usually returned in the form
of values. Similarly, when you provide information with commands, you
typically supply it in the form of values.

A fixed number of specific types of values are recognized by AppleScript. You
cannot define additional types of values, nor can you change the way values
are represented. The different types of AppleScript values, called value classes,
are described in Chapter 3, “Values.”

Expressions 2

An expression is a series of AppleScript words that corresponds to a value.
Expressions are used in scripts to represent or derive values. When you run a
script, AppleScript converts its expressions into values. This process is known
as evaluation.

Two common types of expressions are operations and variables. An operation
is an expression that derives a new value from one or two other values. A
variable is a named container in which a value is stored. The following sections
introduce operations and variables. For more information about these and
other types of expressions, see Chapter 6, “Expressions.”

Operations 2

The following are examples of AppleScript operations and their values. The
value of each operation is listed following the comment characters (--).

3 + 4 --value: 7

(12 > 4) AND (12 = 4) --value: false

Each operation contains an operator. The plus sign (+) in the first expression, as
well as the greater than symbol (>), the equal symbol (=) symbol, and the word
AND in the second expression, are operators. Operators transform values or
pairs of values into other values. Operators that operate on two values are
called binary operators. Operators that operate on a single value are known as
unary operators. Chapter 6, “Expressions,” contains a complete list of the
operators AppleScript supports and the rules for using them.

C H A P T E R 2

Overview of AppleScript

22 Expressions

You can use operations within AppleScript statements, such as:

tell application "Scriptable Text Editor"

delete word 3 + 4 of document "Test"

end tell

When you run this script, AppleScript evaluates the expression 3 + 4 and
uses the result to determine which word to delete.

Variables 2

When AppleScript encounters a variable in a script, it evaluates the variable by
getting its value. To create a variable, simply assign it a value:

copy "Mitch" to myName

The Copy command takes the data—the string "Mitch"—and puts it in the
variable myName. You can accomplish the same thing with the Set command:

set myName to "Mitch"

Statements that assign values to variables are known as assignment statements.

You can retrieve the value in a variable with a Get command. Run the
following script and then display the result:

set myName to "Mitch"

get myName

You see that the value in myName is the value you stored with the Set command.

You can change the value of a variable by assigning it a new value. A variable
can hold only one value at a time. When you assign a new value to an existing
variable, you lose the old value. For example, the result of the Get command in
the following script is "Pegi".

set myName to "Mitch"

set myName to "Pegi"

get myName

C H A P T E R 2

Overview of AppleScript

Script Objects 23

AppleScript does not distinguish uppercase letters from lowercase variables in
variable names; the variables myName, myname, and MYNAME all represent the
same value.

Script Objects 2

Script objects are objects you define and use in scripts. Like application objects,
script objects respond to commands and have specific information associated
with them. Unlike application objects, script objects are defined in scripts.

Script objects are an advanced feature of AppleScript. They allow you to use
object-oriented programming techniques to define new objects and commands.
Information contained in script objects can be saved and used by other scripts.
For information about defining and using script objects, see Chapter 9, “Script
Objects.” You should be familiar with the concepts in the rest of this guide
before attempting to use script objects.

Scripting Additions 2

Scripting additions are files that provide additional commands or coercions
you can use in scripts. A scripting addition file must be located in the Scripting
Additions folder (located in the Extensions folder of the System Folder) for
AppleScript to recognize the additional commands it provides.

Unlike other commands used in AppleScript, scripting addition commands
work the same way regardless of the target you specify. For example, the Beep
command, which is provided by the General Commands scripting addition,
triggers the alert sound no matter which application the command is sent to.

A single scripting addition file can contain several commands. For example, the
File Commands scripting addition includes the commands Path To, List Folder,
List Disks, and Info For. The scripting additions provided by Apple Computer,
Inc., are described in the book AppleScript Scripting Additions Guide. Scripting
additions are also sold commercially, included with applications, and
distributed through electronic bulletin boards and user groups.

C H A P T E R 2

Overview of AppleScript

24 Dialects

Dialects 2

AppleScript scripts can be displayed in several different dialects, or representa-
tions of AppleScript that resemble human languages or programming
languages. The dialects available on a given computer are determined by the
Dialects folder, a folder in the Scripting Additions folder (which in turn is
located in the Extensions folder of the System Folder) that contains one dialect
file for each AppleScript dialect installed on your computer.

You can select any of the available dialects from the Script Editor. You can
tell which dialects are available by examining the pop-up menu in the lower-
left corner of a Script Editor window. You can change the dialect in which a
script is displayed by selecting a different dialect from the pop-up menu. The
behavior of a script when you run it is not affected by the dialect in which it
is displayed.

For more information about selecting dialects and formatting options from the
Script Editor, see Getting Started With AppleScript.

Other Features and Language Elements 2

So far, you’ve been introduced to the key elements of the AppleScript language,
including statements, objects, commands, expressions, and script objects.
The reference section of this guide discusses these elements in more detail
and describes how to use them in scripts. Before you continue to the reference
section, however, you’ll need to know about a few additional elements
and features of the AppleScript scripting language that are not described in
the reference:

■ continuation characters

■ comments

■ identifiers

■ case sensitivity

■ abbreviations

■ compiling scripts

C H A P T E R 2

Overview of AppleScript

Other Features and Language Elements 25

Continuation Characters 2

A simple AppleScript statement must normally be on a single line. If a statement
is longer than will fit on one line, you can extend it by including a continuation
character, ¬ (Option-L or Option-Return), at the end of one line and continuing
the statement on the next. For example, the statement

delete word 1 of paragraph 3 of document "Learning AppleScript"

can appear on two lines:

delete word 1 of paragraph 3 of document ¬

"Learning AppleScript"

The only place a continuation character does not work is within a string. For
example, the following statement causes an error, because AppleScript interprets
the two lines as separate statements.

--this statement causes an error:

delete word 1 of paragraph 3 of document "Fundamentals ¬

of Programming"

Note
The characters -- in the example indicate that the first line
is a comment. A comment is text that is ignored by
AppleScript when a script is run. Comments are added to
help you understand scripts. They are explained in the
next section, “Comments.” ◆

If a string extends beyond the end of the line, you can continue typing without
pressing Return (the text never wraps to the next line), or you can break the
string into two or more strings and use the concatenation operator (&) to
join them:

delete word 1 of paragraph 3 of document "Fundamentals " ¬

& "of Programming"

For more information about the concatenation operator, see Chapter 6,
“Expressions.”

C H A P T E R 2

Overview of AppleScript

26 Other Features and Language Elements

Comments 2

To explain what a script does, you add comments. A comment is text that
remains in a script after compilation but is ignored by AppleScript when the
script is executed. There are two kinds of comments:

■ A block comment begins with the characters (* and ends with the
characters *). Block comments must be placed between other statements.
They cannot be embedded in simple statements.

■ An end-of-line comment begins with the characters -- and ends with the
end of the line.

You can nest comments, that is, comments can contain other comments.

Here are some sample comments:

--end-of-line comments extend to the end of the line;

(* Use block comments for comments that occupy

more than one line *)

copy result to theCount--stores the result in theCount

(* The following subroutine, findString, searches for a

string in a list of Scriptable Text Editor files *)

(* Here are examples of

--nested comments

(* another comment within a comment *)

*)

The following block comment causes an error because it is embedded in
a statement.

--the following block comment is illegal

tell application "Scriptable Text Editor"

get (* word 1 of *) paragraph 1 of front document

end tell

C H A P T E R 2

Overview of AppleScript

Other Features and Language Elements 27

Because comments are not executed, you can prevent parts of scripts from
being executed by putting them within comments. You can use this trick,
known as “commenting out,” to isolate problems when debugging scripts or
temporarily block execution of any parts of script that aren’t yet finished.
Here’s an example of “commenting out” an unfinished handler:

(*

on finish()

 --under construction

end

*)

If you later remove (* and *), the handler is once again available.

Identifiers 2

An identifier is a series of characters that identifies a value or other language
element. For example, variable names are identifiers. In the following
statement, the variable name myName identifies the value "Fred".

set myName to "Fred"

Identifiers are also used as labels for properties and handlers. You’ll learn
about these uses later in this guide.

An identifier must begin with a letter and can contain uppercase letters,
lowercase letters, numerals (0–9), and the underscore character (_). Here
are some examples of valid identifiers:

Yes

Agent99

Just_Do_It

The following are not valid identifiers:

C--

Back&Forth

999

Why^Not

C H A P T E R 2

Overview of AppleScript

28 Other Features and Language Elements

Identifiers whose first and last characters are vertical bars (|) can contain any
characters. For example, the following are legal identifiers:

|Back and Forth|

|Right*Now!|

Identifiers whose first and last characters are vertical bars can contain additional
vertical bars if the vertical bars are preceded by backslash (\) characters, as in
the identifier |This\|Or\|That|. A backslash character in an identifier must
be preceded by a backslash character, as in the identifier |/\\ Up \\/ Down|.

AppleScript identifiers are not case sensitive. For example, the variable
identifiers myvariable and MyVariable are equivalent.

Identifiers cannot be the same as any reserved words—that is, words in the
system dictionary or words in the dictionary of the application named in the
Tell statement. For example, you cannot create a variable whose identifier is
Yes within a Tell statement to the Scriptable Text Editor, because Yes is a
constant from the Scriptable Text Editor dictionary. In this case, AppleScript
returns a syntax error if you use Yes as a variable identifier.

Case Sensitivity 2

AppleScript is not case sensitive; when it interprets statements in a script, it
does not distinguish uppercase from lowercase letters. This is true for all
elements of the language.

The one exception to this rule is string comparisons. Normally, AppleScript
does not distinguish uppercase from lowercase letters when comparing strings,
but if you want AppleScript to consider case, you can use a special statement
called a Considering statement. For more information, see “Considering and
Ignoring Statements” on page 213.

Most of the examples in this chapter and throughout this guide are in lower-
case letters. Sometimes words are capitalized to improve readability. For
example, in the following variable assignment, the “N” in myName is capitalized
to make it easier to see that two words have been combined to form the name of
the variable.

set myName to "Pegi"

C H A P T E R 2

Overview of AppleScript

Other Features and Language Elements 29

After you create the variable myName, you can refer to it by any of these names:

MYNAME

myname

MyName

mYName

When interpreting strings, such as "Pegi", AppleScript preserves the case of
the letters in the string, but does not use it in comparisons. For example, the
value of the variable myName defined earlier is always "Pegi", but the value
of the expression myName = "PEGI" is true.

Abbreviations 2

The AppleScript English dialect is designed to be intuitive and easy to under-
stand. To this end, AppleScript English uses familiar words to represent objects
and commands and uses statements whose structure is similar to English
sentences. For the same reason, it typically uses real words instead of abbrevia-
tions. In a few cases, however, AppleScript supports abbreviations for long and
frequently used words.

One important example is the abbreviation app, which you can use to refer to
objects of class application. This is particularly useful in Tell statements. For
example, the following two Tell statements are equivalent:

tell application "Scriptable Text Editor"

print the front window

end tell

tell app "Scriptable Text Editor"

print the front window

end tell

C H A P T E R 2

Overview of AppleScript

30 Other Features and Language Elements

Compiling Scripts With the Script Editor 2

When you create or modify a script and then attempt to run or save it as a
compiled script or script application, the Script Editor asks AppleScript to
compile the script first. To compile a script, AppleScript converts the script
from the form typed into a Script Editor window (or any script-editing
window) to a form that AppleScript can execute. AppleScript also attempts to
compile the script when you click the Script Editor’s Check Syntax button.

If AppleScript compiles the script successfully, the Check Syntax button is
dimmed and the Script Editor reformats the text of the script according to the
preferences set with the AppleScript Formatting command (in the Edit menu).
This may cause indentation and spacing to change, but it doesn’t affect the
meaning of the script. If AppleScript can’t compile the script because of syntax
errors or other problems, the Script Editor displays a dialog box describing the
error or, if you are trying to save the script, allowing you to save the script as a
text file only.

P A R T T W O

AppleScript Language
Reference 2

Using Value Class Definitions 33

C H A P T E R 3

Values 3Figure 3-0
Listing 3-0
Table 3-0

Values are data that can be represented, stored, and manipulated in scripts.
AppleScript recognizes many types of values, including character strings, real
numbers, integers, lists, and dates. Values are different from application
objects, which can also be manipulated from AppleScript but are contained in
applications or their documents.

Each value belongs to a value class, which is a category of values that are
represented in the same way and respond to the same operators. To find out
how to represent a particular value, or which operators it responds to, check its
value class definition. AppleScript can coerce a value of one class into a value
of another. The possible coercions depend on the class of the original value.

This chapter describes how to interpret value class definitions, discusses the
common characteristics of all value classes, and presents definitions of the
value classes supported in AppleScript. It also describes how to coerce values.

Using Value Class Definitions 3

Value class definitions contain information about values that belong to a
particular class. All value classes fall into one of two categories: simple values,
such as integers and real numbers, which do not contain other values, or
composite values, such as lists and records, which do. Value class definitions
for composite values contain more types of information than definitions for
simple values.

Figure 3-1 shows the definition for the List value class, a composite value. The
figure shows seven types of information: examples, properties, elements,
operators, commands handled, reference forms, and coercions supported. The
sections following the figure explain each type of information. Some definitions
end with notes (not shown in Figure 3-1) that provide additional information.

C H A P T E R 3

Values

34 Using Value Class Definitions

Figure 3-1 Value class definition for lists

LITERAL EXPRESSIONS

A value of class List is an ordered collection of values. The values
contained in a list are known as items. Each item can belong to
any class.

List

A list appears in a script as a series of expressions contained within braces
and separated by commas. For example,

{ "it's", 2, TRUE }

is a list containing a string, an integer, and a Boolean.

PROPERTIES

ELEMENTS

A value contained in the list. Each value contained in a list is
an item. You can refer to values by their item numbers. For
example, item 2 of {"soup", 2, "nuts"} is the
integer 2. To specify items of a list, use the reference forms
listed in "Reference Forms" later in this definition.

The class identifier for the value. This property is read-only,
and its value is always list.

An integer containing the number of items in the list. This
property is read-only.

A list containing all items in the list except the first item.

A list containing all items in the list, but in the opposite order.

Class

Length

Rest

Reverse

Item

OPERATORS

The operators that can have lists as operands are &, =, , Starts With, Ends
With, Contains, Is Contained By.

C H A P T E R 3

Values

Using Value Class Definitions 35

Figure 3-1 Value class definition for lists (continued)

C H A P T E R 3

Values

36 Using Value Class Definitions

REFERENCE FORMS
Use the following forms to refer to properties of lists and items in lists:

You can count the items in a list with the Count command. For example,
the value of the following statement is 6.

count {"a", "b", "c", 1, 2, 3}
--result: 6

You can also count elements of a specific class in a list. For example, the
value of the following statement is 3.

count integers in {"a", "b", "c", 1, 2, 3}
--result: 3

Another way to count the items in a list is with a Length property
reference:

length of {"a", "b", "c", 1, 2, 3}
--result: 6

•

•

Property. For example, class of {"this", "is", "a","list"}
specifies list.

Index. For example, item 3 of {"this", "is", "a","list"}
specifies "a".

COMMANDS HANDLED

AppleScript supports coercion of a single-item list to any value class
to which the item can be coerced if it is not part of a list.

AppleScript also supports coercion of an entire list to a string if all
items in the list can be coerced to a string. The resulting string
concatenates all the items:

{5, "George", 11.43, "Bill"} as string
--result: "5George11.43Bill"

COERCIONS SUPPORTED

C H A P T E R 3

Values

Using Value Class Definitions 37

Literal Expressions 3

A literal expression is an expression that evaluates to itself. The “Literal
Expressions” section of a value class definition shows examples of how values
of a particular class are represented in AppleScript—that is, typical literal
expressions for values of that class. For example, in AppleScript and many
other programming languages, the literal expression for a string is a series of
characters enclosed in quotation marks. The quotation marks are not part of the
string value; they are a notation that indicates where the string begins and
ends. The actual string value is a data structure stored in AppleScript.

The sample value class definition in Figure 3-1 shows literal expressions for list
values. As with the quotation marks in a string literal expression, the braces
that enclose a list and the commas that separate its items are not part of the
actual list value; they are notations that represent the grouping and items of
the list.

Properties 3

A property of a value is a characteristic that is identified by a unique label and
has a single value. Simple values have only one property, called Class, that
identifies the class of the value. Composite values have a Class property, a
Length property, and in some cases additional properties.

Use the Name reference form to specify properties of values. For example, the
following reference specifies the Class property of an integer.

class of 101

--result: integer

The following reference specifies the Length property of a list.

length of {"This", "list", "has", 5, "items"}

--result: 5

You can optionally use the Get command with the Name reference form to
get the value of a property for a specified value. In most cases, you can also
use the Set command to set the additional properties listed in the definitions
of composite values. If a property cannot be set with the Set command, its
definition specifies that it is read-only.

C H A P T E R 3

Values

38 Using Value Class Definitions

Elements 3

Elements of values are values contained within other values. Composite values
have elements; simple values do not. The sample value class definition in
Figure 3-1 shows one element, called an item.

Use references to refer to elements of composite values. For example, the
following reference specifies the third item in a list:

item 3 of {"To", "be", "great", "is", "to", "be", "misunderstood"}

--result: "great"

The “Reference Forms” section of a composite value class definition lists the
reference forms you can use to specify elements of composite values.

Operators 3

You use operators, such as the addition operator (+), the concatenation
operator (&), and the equality operator (=), to manipulate values. Values
that belong to the same class can be manipulated by the same operators.
The “Operators” section of a value class definition lists the operators that
can be used with values of a particular class.

For complete descriptions of operators and how to use them in expressions,
see “Operations,” which begins on page 161.

Commands Handled 3

Commands are requests for action. Simple values cannot respond to commands,
but composite values can. For example, lists can respond to the Count
command, as shown in the following example.

count {"This", "list", "has", 5, "items"}

--result: 5

Each composite value class definition includes a “Commands Handled” section
that lists commands to which values of that class can respond.

C H A P T E R 3

Values

Value Class Definitions 39

Reference Forms 3

A reference is a compound name for an object or a value. You can use
references to specify values within composite values or properties of simple
values. You cannot use references to refer to simple values.

The “Reference Forms” section is included in composite value class definitions
only. It lists the reference forms you can use to specify elements of a composite
value. For complete descriptions of the AppleScript reference forms, see
Chapter 5, “Objects and References.”

Coercions Supported 3

AppleScript can change a value of one class into a value of another class. This
is called coercion. The “Coercions Supported” section of a value class
definition describes the classes to which values of that class can be coerced.

Because a list consists of one or more values, any value can be added to a list or
coerced to a single-value list. The definition in Figure 3-1 also lists the value
classes to which individual items in a list can be coerced.

For more information about coercions, see “Coercing Values,” which begins
on page 68. For a summary of the coercions provided by AppleScript, see
Figure 3-2 on page 70.

Value Class Definitions 3

This section describes the AppleScript value classes. Table 3-1 summarizes the
class identifiers recognized by AppleScript.

Three identifiers in Table 3-1 act only as synonyms for other value classes:
Number is a synonym for either Integer or Real, Text is a synonym for String,
and Styled Text is a synonym for a string that contains style and font
information. You can coerce values using these synonyms, but the class of the
resulting value is always the true value class.

C H A P T E R 3

Values

40 Value Class Definitions

For example, you can use the class identifier Text to coerce a date to a string:

set x to date "May 14, 1993" as text

class of x

--result: string

Although definitions for value class synonyms are included in the sections that
follow, they do not correspond to separate value classes. For more information
about coercing values using synonyms, see “Coercing Values,” which begins on
page 68.

Table 3-1 AppleScript value class identifiers

Value class
identifier Description of corresponding value

Boolean A logical truth value

Class A class identifier

Constant A reserved word defined by an application or AppleScript

Data Raw data that cannot be represented in AppleScript, but can
be stored in a variable

Date A string that specifies a day of the week, day of the month,
month, year, and time

Integer A positive or negative number without a fractional part

List An ordered collection of values

Number Synonym for class Integer or class Real; a positive or negative
number that can be either of class Integer or of class Real

Real A positive or negative number that can have a fractional part

Record A collection of properties

Reference A reference to an object

String An ordered series of characters

Styled Text Synonym for a special string that includes style and font
information

Text Synonym for class string

C H A P T E R 3

Values

Value Class Definitions 41

Boolean 3

A value of class Boolean is a logical truth value. The most common Boolean
values are the results of comparisons, such as 4 > 3 and WordCount = 5.
The two possible Boolean values are true and false.

LITERAL EXPRESSIONS

true

false

PROPERTY

Class The class identifier for the object. This property is read-only, and
its value is always boolean.

ELEMENTS

None

OPERATORS

The operators that take Boolean values as operands are And, Or, Not, &, =,
and ≠.

The = operator returns true if both operands evaluate to the same Boolean
value (either true or false); the ≠ operator returns true if the operands
evaluate to different Boolean values.

The binary operators And and Or take Boolean expressions as operands and
return Boolean values. An And operation, such as (2 > 1) and (4 > 3),
has the value true if both its operands are true, and false otherwise. An Or
operation, such as (theString = "Yes") or (today = "Tuesday"),
has the value true if either of its operands is true.

The unary Not operator changes a true value to false or a false value
to true.

COERCIONS SUPPORTED

AppleScript supports coercion of a Boolean value to a single-item list.

C H A P T E R 3

Values

42 Value Class Definitions

Class 3

A value of class Class is a class identifier. A class identifier is a reserved word
that specifies the class to which an object or value belongs. The Class property
of an object contains a class identifier value.

LITERAL EXPRESSIONS

string

integer

real

boolean

class

PROPERTY

Class The class identifier for the object. This property is read-only, and
its value is always class.

ELEMENTS

None

OPERATORS

The operators that take class identifier values as operands are &, =, ≠, and As.

The operator As takes a value of one class and coerces it to a value of a class
specified by a class identifier. For example,

"1.5" as real

coerces a string into the corresponding real number, 1.5. For more information
about coercing values, see Chapter 6, “Expressions.”

COERCIONS SUPPORTED

AppleScript supports coercion of a class identifier to a single-item list.

C H A P T E R 3

Values

Value Class Definitions 43

Constant 3

A value of class Constant is a reserved word defined by AppleScript or an
application in its dictionary. Applications define sets of values that can be used
for parameters of a particular command; for example, the value of the saving
parameter of a Close command must be one of the three constants yes, no,
and ask.

LITERAL EXPRESSIONS

yes

no

ask

PROPERTY

Class The class identifier for the object. This property is read-only,
and its value is always constant.

ELEMENTS

None

OPERATORS

The operators that take values of class Constant as operands are &, =, ≠, and As.

COERCIONS HANDLED

AppleScript supports coercion of a constant to a single-item list.

NOTES

Constants are not strings, and they must not be surrounded by
quotation marks.

You cannot define your own constants; constants can be defined only
by applications and AppleScript.

C H A P T E R 3

Values

44 Value Class Definitions

Data 3

A value of class Data is data returned by an application (in response to a
command) that does not belong to any of the other value classes defined in this
section. A value of class Data is raw data that can only be stored in a variable.

PROPERTY

Class The class identifier for the object. This property is read-only,
and its value varies depending on the application.

ELEMENTS

None

OPERATORS

The operators that can take values of class Data as operands are = and ≠.

COERCIONS SUPPORTED

AppleScript supports coercion of a Data value to a single-item list.

Date 3

A complete Date value specifies the day of the week, the date (month, day
of the month, and year), and the time; if you provide only some of this
information, AppleScript fills in the missing pieces with default values. You
can get and set properties of a Date value that correspond to different parts
of the date and time information.

You can specify Date values in many different formats. The format always
begins with the word date followed by a string (within quotation marks)
containing the date and time information. You can spell out the day of the
week, month, or date. You can also use standard three-letter abbreviations
for the day and month.

C H A P T E R 3

Values

Value Class Definitions 45

LITERAL EXPRESSIONS

date "12/5/54, 12:06 PM"

date "12/05/53, 12:06"

date "12/05/54"

date "12:06"

date "Sunday, December 5, 1954 12:06 pm"

PROPERTIES

Class The class identifier for the object. This property is read-only, and
its value is always date.

Weekday One of the constants Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday or Mon, Tue, Wed, Thu,
Fri, Sat, Sun.

Month One of the constants January, February, March, April, May,
June, July, August, September, October, November,
December or Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec.

Year An integer specifying the year; for example, 1993.

Time An integer that specifies the number of seconds since midnight
of the date value; for example, 2700 is equivalent to 12:45 AM.

Date A string that consists of the date portion of the date value; for
example, "June 3, 1993".

ELEMENTS

None

C H A P T E R 3

Values

46 Value Class Definitions

OPERATORS

The operators that take Date values as operands are &, +, –, =, ≠, >, ≥, <, ≤,
Comes Before, Comes After, and As. In expressions containing >, ≥, <, ≤, Comes
Before, or Comes After, a later time is greater than an earlier time. The
following operations on Date values with the + and – operators are supported:

date + timeDifference
--result: date

date - date
--result: timeDifference

date - timeDifference
--result: date

where date is a Date value and timeDifference is an Integer value specifying a
time difference in seconds. To simplify the notation of time differences, you can
also use one or more of these of these constants:

minutes 60

hours 60 * minutes

days 24 * hours

weeks 7 * days

Here’s an example:

date "Apr 15, 1992" + 4 * days + 3 * hours + 2 * minutes

For more information about the way AppleScript operators treat Date values,
see “Date-Time Arithmetic,” which begins on page 180.

C H A P T E R 3

Values

Value Class Definitions 47

REFERENCE FORMS

You can refer to properties of a Date value using the Property reference form.

weekday of date "May 3, 1993"

--result: Monday

time of date "May 3, 1993"

--result: "12:00 AM"

Note that AppleScript fills in a default time property for the date specified in
the second example.

If you want to specify a time relative to a date, you can do so as follows:

date "2:30 am" of date "May 3, 1993"

--result: date "May 3, 1993 2:30 AM"

date "Sept. 27, 1993" relative to date "3PM"

--result: date "September 27, 1993 3:00 PM"

In addition to of, you can also use the synonyms relative to or in for
this purpose.

COERCIONS SUPPORTED

AppleScript supports coercion of a Date value to a single-item list or a string.

NOTES

Regardless of the format you use when you type a date in a script, AppleScript
always displays Date values in the format shown in the following example,
which includes the full name of the day of the week and month and no leading
zeros for the date.

date "Sunday, January 3, 1992 12:05 PM"

If you don’t specify a complete date, day, and time when typing a Date value,
AppleScript fills in information as needed. If you don’t specify the date
information, AppleScript uses the date when the script is compiled. If you

C H A P T E R 3

Values

48 Value Class Definitions

don’t specify the time information, 12:00 AM (midnight) is the default. If you
omit AM or PM, AM is the default; however, if you specify 12:00 without AM
or PM, 12:00 PM is the default. If you specify the time using 24-hour time,
AppleScript converts it to the equivalent time using AM or PM; for example,
17:00 is equivalent to 5:00 PM.

To get the current date, use the scripting addition command Current Date.
For example,

if current date = date "Sunday, January 23, 1992 12:05 PM"

then print the front window

end if

For a complete description of the Current Date command, see the AppleScript
Scripting Additions Guide.

Integer 3

A value of class Integer is a positive or negative number without a
fractional part.

LITERAL EXPRESSIONS

1

2

-1

1000

PROPERTY

Class The class identifier for the object. This property is read-only, and
its value is always integer.

ELEMENTS

None

C H A P T E R 3

Values

Value Class Definitions 49

OPERATORS

The Div operator always returns an integer as its result. The +, –, *, Mod, and ^
operators return integers or real numbers.

The operators that can have integers as operands are +, -, *, ÷ (or /), Div, Mod,
^, =, ≠, >, ≥, <, and ≤.

COERCIONS SUPPORTED

AppleScript supports coercion of an Integer value to a single-item list, a real
number, or a string.

You can also coerce an integer using the synonym Number, but the class of the
resulting value remains unchanged:

set x to 7 as number

class of x --result: integer

NOTES

The largest value that can be expressed as an integer in AppleScript is
±536870909, which is equal to ±(229– 3). Larger integers (positive or negative)
are converted to real numbers (expressed in exponential notation) when
scripts are compiled.

List 3

A value of class List is an ordered collection of values. The values contained in
a list are known as items. Each item can belong to any class.

LITERAL EXPRESSIONS

A list appears in a script as a series of expressions contained within braces and
separated by commas. For example,

{ "it's", 2, true }

is a list containing a string, an integer, and a Boolean.

C H A P T E R 3

Values

50 Value Class Definitions

Each list item can be any valid expression. For example,

{ "it" & "'s", 1 + 1, 4 > 3 }

has the same value as the list in the previous example, because each of the
expressions it contains has the same value as the corresponding expression
in the previous example.

An empty list is a list containing no items. It is represented by a pair of
empty braces:

{}

PROPERTIES

Class The class identifier for the value. This property is read-only, and
its value is always list.

Length An integer containing the number of items in the list. This
property is read-only.

Rest A list containing all items in the list except the first item.

Reverse A list containing all items in the list, but in the opposite order.

ELEMENT

Item A value contained in the list. Each value contained in a list
is an item. You can refer to values by their item numbers.
For example, item 2 of { "soup", 2, "nuts" } is the
integer 2. To specify items of a list, use the reference forms listed
in “Reference Forms” later in this definition.

OPERATORS

The operators that can have List values as operands are &, =, ≠, Starts With,
Ends With, Contains, Is Contained By.

For detailed explanations and examples of how AppleScript operators treat
lists, see “Operators That Handle Operands of Various Classes,” which begins
on page 168.

C H A P T E R 3

Values

Value Class Definitions 51

COMMANDS HANDLED

You can count the items in a list with the Count command. For example, the
value of the following statement is 6.

count {"a", "b", "c", 1, 2, 3}

--result: 6

You can also count elements of a specific class in a list. For example, the value
of the following statement is 3.

count integers in {"a", "b", "c", 1, 2, 3}

--result: 3

Another way to count the items in a list is with a Length property reference:

length of {"a", "b", "c", 1, 2, 3}

--result: 6

REFERENCE FORMS

Use the following reference forms to refer to properties of lists and items in lists:

■ Property. For example, class of {"this", "is", "a", "list"}
specifies list.

■ Index. For example, item 3 of {"this", "is", "a", "list"}
specifies "a".

■ Middle. For example, middle item of {"this", "is", "a",
"list"} specifies "is".

■ Arbitrary. For example, some item of {"soup", 2, "nuts"} might
specify any of the items in the list.

■ Every Element. For example, every item of {"soup", 2, "nuts"}
specifies {"soup", 2, "nuts"}.

■ Range. For example, items 2 thru 3 of {"soup", 2, "nuts"}
specifies {2, "nuts"}.

C H A P T E R 3

Values

52 Value Class Definitions

You cannot use the Relative, Name, ID, or Filter reference forms. For example,
the following reference, which uses the Filter reference form on a list, is
not valid.

the items in {"this", "is", "a", "list"} whose first ¬
character is "t"

--result: not a valid reference

COERCIONS SUPPORTED

AppleScript supports coercion of a single-item list to any value class to which
the item can be coerced if it is not part of a list.

AppleScript also supports coercion of an entire list to a string if all items in the
list can be coerced to a string. The resulting string concatenates all the items:

{5, "George", 11.43, "Bill"} as string

--result: "5George11.43Bill"

Individual items in a list can be of any value class, and AppleScript supports
coercion of any value to a list that contains a single item. Concatenated values
of any class can also be coerced to a list:

5 & "George" & 11.43 & "Bill" as list

--result: {5, "George", 11.43, "Bill"}

NOTES

To merge or add values to lists, use the concatenation operator (&). For example,

{"This"} & {"is", "a", "list"}

results in

{"This", "is", "a", "list"}

Note that the concatenation operator merges the items of the two lists into a
single list rather than making one list a value within the other list.

C H A P T E R 3

Values

Value Class Definitions 53

Number 3

The class identifier Number is a synonym for Integer or Real; it describes a
positive or negative number that can be either of class Integer or
of class Real.

LITERAL EXPRESSIONS

1

2

-1

1000

10.2579432

1.0

1.

Any valid literal expression for an Integer or a Real value is also a valid literal
expression for a Number value.

PROPERTY

Class The class identifier for the object. This property is read-only, and
its value is always either integer or real.

ELEMENTS

None

OPERATORS

Because values identified as values of class Number are really values of either
class Integer or class Real, the operators available are the operators described in
the definitions of the Integer or Real value classes, beginning on page 48 and
page 54, respectively.

C H A P T E R 3

Values

54 Value Class Definitions

COERCIONS SUPPORTED

You can use the class identifier Number to coerce any value that can be coerced
to a Real value or an Integer value. However, the resulting value class is always
either Integer or Real:

set x to 1.5 as number

class of x --result: real

Real 3

Values that belong to the class Real are positive or negative numbers that can
include a decimal fraction, such as 3.14159 and 1.0.

LITERAL EXPRESSIONS

10.2579432

1.0

1.

As shown in the third example, a decimal point indicates a real number, even if
there is no fractional part.

Real numbers can also be written using exponential notation. A letter e is
preceded by a real number (without intervening spaces) and followed by an
integer exponent (also without intervening spaces). The exponent can be either
positive or negative. To obtain the value, the real number is multiplied by 10
to the power indicated by the exponent, as in these examples:

1.0e5 --equivalent to 1.0 * 10^5, or 100000

1.0e+5 --same as 1.0e5

1.0e-5 --equivalent to 1.0 * 10^-5, or .00001

PROPERTY

Class The class identifier for the object. This property is read-only, and
its value is always real.

C H A P T E R 3

Values

Value Class Definitions 55

ELEMENTS

None

OPERATORS

The ÷ and / operators always return Real values as their results. The +, -,
*, Mod, and ^ operators return Real values if either of their operands is a
Real value.

The operators that can have Real values as operands are +, -, *, ÷ (or /), Div,
Mod, ^, =, ≠, >, ≥, <, and ≤.

COERCIONS SUPPORTED

AppleScript supports coercion of a Real value to a single-item list or a
string. AppleScript supports coercion of a Real value to an Integer value
only if the Real value has no fractional part.

AppleScript also supports coercion of a Real value using the synonym Number,
but the class of the resulting value remains unchanged:

set x to 1.5 as number

class of x --result: real

NOTES

Real numbers that are greater than or equal to 10,000.0 or less than or equal to
0.0001 are converted to exponential notation when scripts are compiled. The
largest value that can be evaluated (positive or negative) is 1.79769e+308.

Record 3

A value of class Record is an unordered collection of properties. Like the
properties of application objects, each property has a label, and the properties
of a record are distinguished from each other by their label. There can be only
one property with a particular label in any record.

C H A P T E R 3

Values

56 Value Class Definitions

LITERAL EXPRESSIONS

Records appear in scripts as series of properties contained within braces and
separated by commas. Each property has a label. Following the label is a colon,
and following the colon, the value of the property. For example, the record

{ name:"Mitchell", height:70.5, weight:165 }

contains three properties: Name (a string), Height (a real number), and Weight
(an integer). The values assigned to properties can belong to any class.

AppleScript evaluates expressions in a record before using the record in other
expressions. For example, the record

{ name:"Mitchell", height:72 - 1.5, weight:150 + 15 }

is equivalent to

{ name:"Mitchell", height:70.5, weight:165 }

PROPERTIES

In addition to the properties that are specific to each record, two properties are
common to all records:

Class The class identifier for the object. For most records, the value of
the Class property is record. However, the Class property of a
record is not read-only. AppleScript and applications use special
records for certain data. For example, the Scriptable Text Editor
uses special records to specify the styles (such as bold and
underline) of text objects. The value of the Class property for
these records is the class identifier Text Style Info, as illustrated
in this example:

{class:Text Style Info, On Styles:{Bold}, ¬

Off Styles:{ Italic, Outline, Shadow}}

Length An integer containing the number of properties in the record.
This property is read-only.

If you define a Class property explicitly in a record, the value you define
replaces the implicit Class property record described above.

C H A P T E R 3

Values

Value Class Definitions 57

OPERATORS

The operators that can have records as operands are &, =, ≠, Starts With, Ends
With, Contains, and Is Contained By.

For detailed explanations and examples of how AppleScript operators treat
records, see “Operators That Handle Operands of Various Classes,” which
begins on page 168.

COMMANDS HANDLED

You can count the properties in a record with the Count command. For
example, the value of the following statement is 2.

count of {name:"Sue", mileage:4000}

--result: 2

Another way to count the properties in a record is with a Length property
reference. For example, the value of the following reference is 3.

length of {name:"Sue", mileage:8000, city:"Sunnyvale"}

--result: 3

REFERENCE FORMS

The only reference form you can use with records is the Property reference
form. For example, the following reference specifies the Mileage property of
a record.

mileage of {name:"Sue", mileage:8000, city:"Sunnyvale"}

--result: 8000

You cannot refer to properties in records by numeric index. For example,
the following reference, which uses the Index reference form on a record,
is not valid.

item 2 of { name:"Sue", mileage:8000, city:"Sunnyvale" }

--result: not a valid reference

COERCIONS SUPPORTED

AppleScript supports coercion of records to lists; however, all property labels
are lost in the coercion and the resulting list cannot be coerced back to a record.

C H A P T E R 3

Values

58 Value Class Definitions

NOTES

To specify a particular property of a record, you give its name. For example, if
you assign the record to a variable, as in

copy { name:"Mitchell", height:70.5, weight:165 } to writer

you can then get the value of the Name property with the expression

name of writer

A property of a record can contain a value of any class. You can change the
class of a property simply by assigning a value belonging to another class.

After you define a record, you cannot add additional properties to it. You can,
however, concatenate records. For more information, see “Concatenation” on
page 177.

Reference 3

A value of class Reference is a reference to an object. You can create a value of
class Reference by using the A Reference To operator. In addition, applications
can return references in response to commands.

A value of class Reference is different from the value of the object to which a
reference refers. For example, the reference

word 1 of front window of app "Scriptable Text Editor"

--result: a string

refers to a word object, whose value is a string, such as "Today". But a value
of class Reference created with the A Reference To operator is a structure
within AppleScript that refers (or points) to a specific object.

a reference to word 1 of front window of app ¬

"Scriptable Text Editor"

--result: word 1 of window 1 of application ¬

"Scriptable Text Editor"

C H A P T E R 3

Values

Value Class Definitions 59

The difference between a value of class Reference and the object it refers to is
analogous to the difference between an address and the building it refers to.
The address is a series of words and numbers, such as “1414 Maple Street,” that
identifies the building. It is distinct from the building itself.

Values of class Reference are similar to pointers in other programming
languages, but unlike pointers, references can refer only to objects. For more
information about creating values of class Reference, see “The ‘A Reference To’
Operator” on page 153.

LITERAL EXPRESSIONS

word 1 of document "Report"

window "Graph"

PROPERTIES

Class The class identifier for the object. This property is read-only, and
its value is always reference.

Contents The value of the object to which the reference refers. The class
of the value depends on the reference. For information about
how to use the Contents property, see “The ‘A Reference To’
Operator” on page 153.

ELEMENTS

None

OPERATORS

The A Reference To operator returns a reference as its result.

C H A P T E R 3

Values

60 Value Class Definitions

COERCIONS SUPPORTED

The application to which an object specified by a reference belongs determines
whether the value of the object can be coerced to a desired class.

NOTES

A reference can function as a reference to an object or as an expression whose
value is the value of the object specified in the reference. When a reference is
the direct parameter of a command, it usually functions as a reference to an
object, indicating to which object the command should be sent. In most other
cases, references function as expressions, which AppleScript evaluates by
getting their values.

For example, the reference in the following example functions as a reference to
an object. It identifies the object to which the Copy command is sent.

copy word 1 of front document of application "Scriptable Text Editor"

On the other hand, the reference in the following example functions as a
reference expression:

repeat (word 1 of front document of application ¬
"Scriptable Text Editor") times

display dialog "Hello"

end repeat

When AppleScript executes the statement, it gets the value of the reference
word 1 of front document of application "Scriptable Text
Editor"—a string—and then coerces it to an integer, if possible. (For
information about the Repeat statement, see “Repeat Statements,” which
begins on page 194. For information about coercions, see “Coercing Values” on
page 68.)

C H A P T E R 3

Values

Value Class Definitions 61

String 3

A value of class String is a character string (an ordered series of characters)
in AppleScript.

LITERAL EXPRESSIONS

Strings in scripts are always surrounded by quotation marks, as in these
examples:

"string"

"Rolling along, stringing a song"

"Pennsylvania 68000"

To include quotation marks in a string, you must use the equivalent two-
character sequence, \". For more information, see “Special Characters in
Strings” later in this section.

PROPERTIES

Class The class identifier for the object. This property is read-only, and
its value is always string.

Length The number of characters in the string.

ELEMENTS

Strings can have character, word, paragraph, and text elements.

The elements of a string may be different from the character, word, paragraph,
and text objects of applications.

Character A single character contained in the string.

Paragraph A series of characters ending with either (1) a return character
or (2) the end of the string and beginning immediately after
either (1) the first character after the end of the preceding
paragraph or (2) the beginning of the string.

Text A continuous series of characters, including spaces, tabs, and
all other characters, within a string (see “Notes” later in
this section).

C H A P T E R 3

Values

62 Value Class Definitions

Word A continuous series of characters that contains only the
following types of characters:

letters (including letters with diacritical marks)
digits
nonbreaking spaces
dollar signs, cent signs, English pound symbols, or yen symbols
percent signs
commas between digits
periods before digits
apostrophes between letters or digits

hyphens (but not minus signs [Option-hyphen] or dashes
[Option-Shift-hyphen]).

Here are some examples of words:

non-functional

he's

v1.0

$99.99

12c-d

Note that this definition applies to English text in the Roman
script system. Words in other languages are defined by the
script system for each language if the appropriate script system
is installed. (For more information about script systems, see
page 317.)

OPERATORS

The operators that can have strings as operands are &, =, ≠, >, ≥, <, ≤, Starts
With, Ends With, Contains, Is Contained By, and As.

For detailed explanations and examples of how AppleScript operators treat
strings, see “Operators That Handle Operands of Various Classes,” which
begins on page 168.

C H A P T E R 3

Values

Value Class Definitions 63

REFERENCE FORMS

You can use the following reference forms to refer to elements of strings:

■ Property. For example, class of "This is a string" specifies string.

■ Index. For example, word 3 of "This is a string" specifies "a".

■ Middle. For example, middle word of "This is a string"
specifies "is".

■ Arbitrary. For example, some word of "This is a string" might
specify any of the words in the string.

■ Every Element. For example, every word of "This is a string"
specifies {"This", "is", "a", "string"}.

■ Range. For example, words 2 thru 3 of "This is a string"
specifies {"is", "a"}.

You cannot use the Relative, Name, ID, or Filter reference forms.

SPECIAL CHARACTERS IN STRINGS

The backslash (\) and double-quote (") characters have special meaning in
strings. If you want to include either of these characters in a string, you must
use the equivalent two-character sequence:

The tab and return characters can be included in strings, or they can be
represented by equivalent two-character sequences:

When a string containing any of the two-character sequences is displayed to
the user (as, for example, in a dialog box), the sequences are converted. For
example, the string

"item 1\t1\ritem 2\t2"

Backslash character \\

Double-quote character \"

Tab character \t

Return character \r

C H A P T E R 3

Values

64 Value Class Definitions

is displayed in a dialog box as

item 1 1

item 2 2

STRING CONSTANTS

AppleScript defines three constants for string values:

COERCIONS SUPPORTED

If a string consists of an appropriate number, AppleScript supports coercion of
the string to an integer, a number, or a real number. Similarly, any integer,
number, or real number can be coerced to a string. AppleScript also supports
coercion of a string to a single-item list and coercion of a list whose items are all
strings to a single concatenated string.

NOTES

There is no limit on the length of strings except the memory available in
the computer.

To get a contiguous range of characters within a string, use the text element.
For example, the value of the following statement is the string "y thi".

get text of characters 3 thru 7 of "Try this at home"

--result: "y thi"

The result of the same statement without the text element is a list.

get characters 3 thru 7 of "Try this at home"

--result: {"y", " ", "t", "h", "i"}

Constant Value

space " "

tab "\t"

return "\r"

C H A P T E R 3

Values

Value Class Definitions 65

You cannot set the value of an element of a string. For example, if you attempt
to change the value of the first character of the string "boris" as shown in the
following example, you’ll get an error.

set myName to "boris"

set character 1 of myName to "D"

--results in an error, because you cannot set the values of

--elements of strings

Styled Text 3

The class identifier Styled Text is a synonym for a string that includes style and
font information.

LITERAL EXPRESSIONS

The only difference between a value of class String and a value of class Styled
Text is that the latter can include (but is not required to include) style and font
information. Thus any valid literal expression of class String is also valid as
class Styled Text.

PROPERTIES

Class The class identifier for the object. This property is read-only, and
its value is always string.

Length The number of characters in the string.

ELEMENTS

Styled text has the same character, word, paragraph, and text elements as
a string.

C H A P T E R 3

Values

66 Value Class Definitions

OPERATORS

Because values identified as Styled Text values are really values of class String,
the operators available are the operators described in the definition of class
String: &, =, ≠, >, ≥, <, ≤, Starts With, Ends With, Contains, Is Contained By,
and As.

For detailed explanations and examples of how AppleScript operators treat
strings, see “Operators That Handle Operands of Various Classes,” which
begins on page 168.

REFERENCE FORMS

You can use the same reference forms with styled text that you can use with
strings: Property, Index, Middle, Arbitrary, Every Element, and Range. For
details, see page 63.

SPECIAL CHARACTERS AND STRING CONSTANTS

You can use the same special characters, constants, and coercions with styled
text that you can use with strings. For details, see page 63. Note that literal
string constants do not include style and font information; in other words, they
are not styled text.

COERCIONS SUPPORTED

You can use the same coercions with styled text that you can use with strings:
coercion to an integer, number, real number, or single-item list, and coercion of
a list of strings to a single concatenated string.

You can use the class identifier Styled Text to coerce any string to styled text.
However, the resulting value is always of class String.

C H A P T E R 3

Values

Value Class Definitions 67

NOTES

You can’t change the style or font information from a script, but you can use
styled text to preserve style and font information when copying text objects
from applications to scripts. For example, you can use a script like this to
obtain styled text, manipulate it, and copy it back into a Scriptable Text Editor
document:

tell application "Scriptable Text Editor"

copy (word 1 of front document) to myStyledTitle

set myModifiedTitle to myStyledTitle & ", alpha release"

copy myModifiedTitle to word 1 of front document

end tell

Because the Scriptable Text Editor returns styled text when it returns the data
for text objects, you don’t need to coerce the returned text to styled text. The
style and font of the first word are preserved both when the word is copied to
the variable myStyledTitle and when it is concatenated with the string
", alpha release". The modified title that is copied back to the document
consists of the original title with its original style and font, plus the unstyled
text, ", alpha release", which appears in the style and font of the character
immediately preceding it.

Styled text also contains information about the form in which the text is
written. If you copy non-Roman text to a variable in a script as styled text,
AppleScript preserves the original text information even though the
Script Editor may not be able to display it correctly. If you then copy the text
to an application that can handle the text in its original form, the text is
displayed correctly.

Text 3

You can use the class identifier Text as a synonym for the identifier String, for
example, in coercions:

"A string" as string = "A string" as text

--result: true

C H A P T E R 3

Values

68 Coercing Values

However, the class of a string is always string:

class of "A string" as text

--result: string

Unlike the class identifier Number (which is a synonym for either Real or
Integer) or Styled Text (which denotes a string that includes font and style
information), the class identifier Text is precisely equivalent to a single class
identifier—String.

Coercing Values 3

AppleScript coerces values in two ways:

■ in response to the As operator

■ automatically, when a value is of a different class than was expected for a
particular command or operation

The As operator specifies a particular coercion. You can use the As operator to
coerce a value to the correct class before using it as a command parameter or
operand. For example,

set myString to 2 as string

coerces the integer 2 into the string "2" before storing it in the variable
myString. Similarly,

"2" as integer + 8

coerces the string "2" to the integer 2, so that it can be added to the other
operand, 8.

C H A P T E R 3

Values

Coercing Values 69

If you provide a command parameter or operand of the wrong class, AppleScript
automatically coerces the operand or parameter to the expected class, if possible.
For example, when AppleScript executes this statement,

repeat (word 2 of document "Big" of application ¬
"Scriptable Text Editor") times

display dialog "Hello"

end repeat

it expects the number of times to be an integer. To coerce word 2 of
document "Big" of application "Scriptable Text Editor" to
an integer, AppleScript gets the value of word 2 of document "Big"
of application "Scriptable Text Editor"—a string—and then
coerces it to an integer, if possible.

Not all values can be coerced to all other classes of values. Figure 3-2 summarizes
the coercions that AppleScript supports. To use the figure, find the class of the
value to be coerced in the column at the left. Search across the table to the column
labeled with the class to which you want to coerce the value. If there is a square
at the intersection, then AppleScript supports the coercion.

Reference values are not included in the table because applications determine
whether the value of an object specified by a reference value can be coerced to a
desired class.

For more information about each coercion, see the corresponding value class
definitions in this chapter.

Note
When coercing strings to values of class Integer, Number,
or Real or vice versa, AppleScript uses the current settings
in the Numbers control panel for decimal and thousands
to determine what separators to use in the string.

When coercing strings to values of class date or vice versa,
AppleScript uses the current settings in the Date & Time
control panel for date and time format. ◆

C H A P T E R 3

Values

70 Coercing Values

Figure 3-2 Coercions supported by AppleScript

Three of the identifiers mentioned at the top of Figure 3-2 act only as synonyms
for other value classes: “number” is a synonym for either “integer” or “real,”
“text” is a synonym for “string,” and “styled text” is a synonym for a string
that contains style and font information. You can coerce values using these
synonyms, but the class of the resulting value is always the appropriate value
class, not the synonym. Here are some examples:

set x to 1.5 as number

class of x

--result: real

Bo
ol

ea
n

C
la

ss
C

on
st

an
t

In
te

ge
r

Si
ng

le
-it

em
 li

st

M
ul

ti-
ite

m
 li

st
N

um
be

r

R
ec

or
d

St
rin

g
or

 te
xt

St
yl

ed
 te

xt
*

Coerce to

Coerce from

Boolean

Class

Constant

Data

Date

Integer

Single-item list

Multi-item list

Real

Record

String

D
at

a
D

at
e

R
ea

l
†

‡

* Only values that include style and font information can be coerced to styled text.
† Only a list whose items can all be coerced to strings can be coerced to a string.
‡ Only a real value that has no fractional part can be coerced to an integer.

C H A P T E R 3

Values

Coercing Values 71

set x to 4 as number

class of x

--result: integer

set x to "Hello" as text

class of x

--result: string

C H A P T E R 3

Values

72 Coercing Values

Types of Commands 71

C H A P T E R 4

Commands 4Figure 4-0
Listing 4-0
Table 4-0

A command is a word or series of words used in AppleScript statements to
request an action. Every command is directed at a target, which is the object
that responds to the command. The target is usually an application object,
but it can also be a script object or a user-defined subroutine or value in the
current script.

Not all commands can be used with all types of targets. When you use a
command to request an action, you must choose a command that works with
the target you want to manipulate. You must also be sure to specify the target
correctly. Several factors, including the direct parameter you provide with a
command and whether or not the command is included in a Tell statement, can
determine the target of a command.

This chapter begins by describing types of commands and targets of commands.
It summarizes which types of commands work with which types of targets.
Next, it describes the details of using commands and command definitions,
including specifying parameters and using results of commands. The chapter
ends with definitions of standard commands.

Types of Commands 4

You can use four types of commands in AppleScript to request actions:
application commands, AppleScript commands, scripting additions, and
user-defined commands.

Each time you use a command, you specify the target, or recipient, of the
command. Potential targets include application objects, script objects, the
current script, and the current application. In some cases you specify the
target explicitly by including it in a Tell statement or supplying a direct
parameter. In other cases you specify the target implicitly.

C H A P T E R 4

Commands

72 Types of Commands

The sections that follow describe the different types of commands and
their targets.

Application Commands 4

Application commands are commands that cause actions in scriptable
applications. The target of an application command is an application object
or a script object. Different application objects respond to different commands.
To determine which commands a particular object can respond to, see the
definitions provided by the application’s documentation. (For example, each
object definition in Appendix B, “Scriptable Text Editor Dictionary,” of this
book includes a list of commands that can act on that object.)

There are two ways to specify an object as the target of a command: in the
direct parameter of the command or in a Tell statement that contains
the command.

The direct parameter is a value, usually a reference, that appears immediately
after a command and specifies the target of the command. Not all commands
can have a direct parameter. If a command can have a direct parameter, the
command’s definition says so.

For example, in the following statement, the reference word 1 of front
document of app "Scriptable Text Editor" is the direct parameter
of the Delete command:

delete word 1 of front document of app "Scriptable Text Editor"

A Tell statement is a statement that specifies a default target for all commands
contained within it. If a command is contained within a Tell statement, the
direct parameter is optional. If you leave out the direct parameter, AppleScript
uses the default target specified in the Tell statement. For example, the Delete
command in the following Tell statement has the same effect as the Delete
command in the previous example:

tell word 1 of front document of app "Scriptable Text Editor"

delete

end tell

C H A P T E R 4

Commands

Types of Commands 73

Similarly, if you specify a reference incompletely in the command line,
AppleScript uses the default target specified in the enclosing Tell statement
to complete the reference. For example, the following statement is equivalent
to both of the previous examples:

tell front document of app "Scriptable Text Editor"

delete word 1

end tell

For information about sending application commands to script objects, see
Chapter 9, “Script Objects,” which begins on page 265.

AppleScript Commands 4

AppleScript commands are commands that are built into the AppleScript
language. They act on values in scripts. The target of an AppleScript command
is a value in the current script, which is usually specified in the direct
parameter of the command.

There are only five AppleScript commands: Copy, Count, Get, Run, and Set. All
of these commands can also function as application commands. For the Count,
Get, Run, and Set commands, if the direct parameter is a value, then the
command functions as an AppleScript command. If the direct parameter is an
application object, the command functions as an application command.

For example, this Count command functions as an AppleScript command
because the direct parameter is a value (a list):

count {"How", "many", "items", "in", "this", "list"}

This Count command functions as an application command because the direct
parameter is an application object:

count words in paragraph 1 of front document of ¬
application "Scriptable Text Editor"

For the Copy command, if the value of the to parameter is a reference to an
application object, then the command functions as an application command.
Otherwise, the command is an AppleScript command.

C H A P T E R 4

Commands

74 Types of Commands

For more examples of how to use Copy, Count, Get, Run, and Set, see the
command definitions later in this chapter.

Scripting Addition Commands 4

Scripting additions are files that provide additional commands or coercions
you can use in scripts. Each scripting addition can contain one or more
command handlers. If a scripting addition is located in the Scripting Additions
folder (in the Extensions folder of the System Folder), the command handlers it
provides are available for use by any script whose target is an application on
that computer.

Like the target of an application command, the target of a scripting addition
command is always an application object or a script object. If the script doesn’t
explicitly specify the target with a Tell statement, AppleScript sends the
command to the default target application, which is usually the application
running the script (for example, the Script Editor).

A scripting addition command performs its action only after the command has
been received by a target application. Unlike application commands, scripting
addition commands always work the same way regardless of the application to
which they are sent.

For example, the scripting addition command Display Dialog displays a dialog
box that can include text, one or more buttons, an icon, and a field in which the
user can type text. In the script that follows, the target of the Display Dialog
command is the Scriptable Text Editor application. When the script runs, the
Scriptable Text Editor becomes the frontmost application (that is, its menus
become visible and its windows become the frontmost windows on the screen)
and passes the command to the scripting addition’s handler for the Display
Dialog command, which displays the dialog box.

tell application "Scriptable Text Editor"

display dialog "What’s your name?" default answer ""

end tell

In the next example, the Display Dialog command is not enclosed in a Tell
statement, nor does it have a direct parameter, so its target is the Script Editor
(or whatever application runs the script). When you run the script, the Script
Editor passes the command to the scripting addition’s handler for the Display

C H A P T E R 4

Commands

Types of Commands 75

Dialog command, which displays the dialog box in the Script Editor’s layer
(that is, in front of any other Script Editor windows that may be open), while
the Script Editor is still the active application.

set theCount to number of words in front document of ¬
app "Scriptable Text Editor"

if theCount > 500 then

display dialog "You have exceeded your word limit."

end

Each scripting addition that contains command handlers has its own dictionary,
which lists the reserved words—including the command names, parameter
labels, and in some cases object names—used to invoke the commands sup-
ported by the scripting addition. If a scripting addition dictionary includes
words that are also part of an application dictionary, then you cannot use
those words within Tell statements to that application.

For example, the Offset command provided by the String Commands scripting
addition reports the offset, in characters, of a string within another string.
Offset is also a property of several Scriptable Text Editor objects and is thus a
word in the Scriptable Text Editor dictionary. Therefore, you cannot use Offset
as a scripting addition command within Tell statements to the Scriptable Text
Editor. If you do, you’ll get a syntax error, because AppleScript treats the word
Offset as a property of a text object.

tell front document of application "Scriptable Text Editor"

offset of "great" in "To be great"

end tell

--result: syntax error

If you specify a script object as the target of a scripting addition command, the
script object either handles the command itself (potentially modifying it) or
passes the command to the default target application. For more information
about scripting additions and script objects, see “Using Continue Statements to
Pass Commands to Applications,” which begins on page 280.

For information about the scripting additions available for AppleScript English
and definitions of the commands they provide, see the AppleScript Scripting
Additions Guide.

C H A P T E R 4

Commands

76 Types of Commands

User-Defined Commands 4

User-defined commands are commands that trigger the execution of collections
of statements, called subroutines, elsewhere in the same script. The target of a
user-defined command is the current script, that is, the script from which the
command is executed.

There are two ways to specify the current script as the target of a user-defined
command. Outside of a Tell statement, simply use the command to specify the
current script as its target. For example, suppose that minimumValue is a
command defined by the user in the current script. The handler for the
minimumValue command is a subroutine that returns the smaller of two
values. The target of the minimumValue command in the following example is
the current script:

set theCount to minimumValue(12,105)

Inside a Tell statement, use the words of me or my to indicate that the target
of the command is the current script and not the default target of the Tell
statement. For example, the following sample script shows how to call the
minimumValue subroutine from within a Tell statement:

tell application "Scriptable Text Editor"

set theCount to my minimumValue(12,105)

get word theCount of front document

end tell

Without the word my before the minimumValue command, AppleScript
sends the minimumValue command to the Scriptable Text Editor, resulting
in an error.

Chapter 8, “Handlers,” describes the syntax for defining and invoking
subroutines such as minimumValue in more detail.

Note
You can also define subroutines in script objects. The target
of a user-defined command whose subroutine is defined in
a script object is the script object. For information about
defining and invoking subroutines in script objects, see
Chapter 9, “Script Objects.” ◆

C H A P T E R 4

Commands

Using Command Definitions 77

Using Command Definitions 4

Command definitions contain information about what commands do and how
to use them in scripts. Figure 4-1 shows the definition for the Move command,
an application command. The definition contains four types of information:
syntax, parameters, results, and examples. Some definitions include information
about errors as well. The sections following the figure explain the information
conveyed by each part of the definition.

Figure 4-1 Command definition for the Move command

PARAMETERS

application command

RESULT

A reference to the object that was moved.
Class: Reference

EXAMPLE

tell document 1 of app "Scriptable Text Editor"
 move word 10 to before paragraph 11
end tell

SYNTAX

A Move command is a request to move an object or objects.

Move

move referenceToObject to referenceToLocation

referenceToObject

referenceToLocation

A reference to the object or objects to move.
Class: Reference

A reference to the location to which to move the object
or objects.
Class: Reference

C H A P T E R 4

Commands

78 Using Command Definitions

Syntax 4

Each command definition begins with a syntax description, which is a
template for using the command in a statement. Syntax descriptions use the
same typographic conventions used elsewhere in this guide: plain computer
font indicates a language element you must type exactly as shown; italic text
indicates a placeholder you must replace with an appropriate value; brackets
indicate the enclosed language element or elements are optional; three ellipsis
points indicate you can repeat the preceding element or elements one or more
times; and vertical bars separate elements from which you must choose a
single element.

For example, to use the Move command, you must replace directParameter with
a reference to the object to move and location with a reference to the location to
which to move it.

Parameters 4

Parameters are values that are included with a command. The “Parameters”
section of a command definition lists the parameters of a particular command
and the information you need to use them correctly.

Many commands include a direct parameter that specifies the object of the
action. If a command includes parameters other than the direct parameter, they
are identified by labels. Parameters that are identified by labels are called
labeled parameters. The direct parameter immediately follows the command;
labeled parameters can be listed in any order. The Move command defined
in Figure 4-1 has a direct parameter (referred to in the definition as
referenceToObject) that specifies the object to move and a labeled parameter
(whose label is to) that specifies where to move the object.

Each parameter value must belong to a particular class, which is listed in its
description in the command definition. For the Move command, the direct
parameter belongs to the class reference. Its value, a reference, is a phrase that
identifies the object to be moved. The to parameter also belongs to the class
reference. It specifies the location to which to move the object. References are
described in Chapter 5, “Objects and References.”

Parameters can be required or optional. Required parameters must be
included with the command; optional parameters need not be. Optional
parameters are enclosed in brackets in syntax descriptions. For optional

C H A P T E R 4

Commands

Using Command Definitions 79

parameters, the description in the “Parameters” section specifies a default
value that is used if you don’t include the parameter.

For more information about direct parameters, see “Application Commands”
on page 72. For more information about using parameters, see “Using
Parameters” on page 80.

Result 4

Many, but not all, commands return results. The result of a command is the
value generated when the command is executed. The “Result” section of a
command definition tells whether a result is returned, and if so, lists its class.
For example, the result of the Move command shown in Figure 4-1 is a
reference to the object that was moved.

For more information about results, see “Using Results” on page 82.

Examples 4

Each command definition includes one or more short examples demonstrating
how to use the command. The example in Figure 4-1 shows how to use the
Move command to move a word in the Scriptable Text Editor.

Errors 4

Commands can return error messages as well as results. An error message is a
message that is returned by an application, AppleScript, or the operating
system if an error occurs during the handling of a command. The “Errors”
section of a command definition, if present, lists errors that are likely to be
returned by a particular command. This information can help you decide if you
need to write error handlers to respond to the error messages that are returned.
Error handlers are described in Chapter 8, “Handlers.”

Some “errors” are not the result of abnormal conditions but are the normal way
you get information about what happened during command execution. For
example, you use the Choose File command to ask the user to choose a file.
When AppleScript executes this command, it displays a dialog box similar to
the one you get when you choose Open from the File menu. If the user presses

C H A P T E R 4

Commands

80 Using Parameters

the Cancel button in the dialog box, AppleScript returns error number –128
and the error string "User canceled". Your script must handle this error
for script execution to continue.

For a complete description of handling errors that occur during script
execution, see Chapter 8, “Handlers.”

Using Parameters 4

This section describes how to

■ use parameters that specify locations

■ coerce parameters

■ deal with raw data in parameters

Parameters That Specify Locations 4

Many commands have parameters that specify locations. A location can be
either an insertion point or another object. An insertion point is a location
where an object can be added. An object, when used as a location parameter,
is an object to be replaced by another object.

For example, in the following statement, the to parameter specifies the location
to which to move the first word. The value of the to parameter is the reference
before paragraph 10, which is an insertion point.

move word 1 to before paragraph 10

In the following statement, the value of the to parameter is an object,
word 10. The Move command replaces word 10 with word 1.

tell front window of application "Scriptable Text Editor"

move word 1 to word 10

end tell

C H A P T E R 4

Commands

Using Parameters 81

Phrases such as before paragraph 10 and word 1 are called relative
references and index references, respectively. These kinds of references specify
locations. For more information about these kinds of references, see “Index” on
page 131 and “Relative” on page 139.

Coercion of Parameters 4

If a parameter doesn’t belong to the right class, it may be possible to coerce it,
that is, to change it into a value of another class. For example, you can coerce
an integer such as 2 to the corresponding string "2" using the As operator:

2 as string

AppleScript performs some coercions, including the previous one, automat-
ically. For example, in the following statement, the direct parameter of the
Copy command should be a string because it is being inserted into a text
editor document.

tell application "Scriptable Text Editor"

copy 12 to beginning of document "Introduction"

end tell

When AppleScript executes this statement, it automatically coerces the integer
12 to the string "12" and inserts the string at the beginning of the document.

The coercions that AppleScript can perform are listed in Chapter 3, “Values.”
Applications can also perform additional coercions, such as coercions for
classes that are specific to an application. These coercions are listed in the
documentation for the application.

Raw Data in Parameters 4

Some application commands return values that do not belong to any of the
normal AppleScript value classes. An example is the Edit Graphic command
supported by some graphics applications. The values that are returned belong
to the class Data, which is described in Chapter 3, “Values.” Values of class
Data cannot be displayed by AppleScript, but they can be stored in variables
and sent as parameters in other commands. For example, if it’s necessary to use

C H A P T E R 4

Commands

82 Using Results

two different applications to edit a graphic, the data value returned by one
Edit Graphic command can be sent as the direct parameter of another Edit
Graphic command.

If an application returns values of class Data, its documentation should say so.

Using Results 4

The result of a command is the value generated when the command is executed.
You can display the result of a command in the Script Editor. For example, if
you run the following script,

tell front document of application "Scriptable Text Editor"

move word 1 to end of paragraph 1

end tell

and then choose Show Result from the Controls menu in the Script Editor,
you’ll see a value such as

word 32 of front document of application "Scriptable Text Editor"

You can use a command that returns a result as a value. For example, the Count
command in the following statement returns a value: the number of words in
the third paragraph.

count words in paragraph 3

You can use this statement anywhere a value is required by enclosing the
statement in parentheses. For example, the following statement sets the value
of numWords to the value returned by the Count command.

set numWords to (count words in paragraph 3)

In addition to displaying the result of a command in the result window,
AppleScript puts the result into a predefined variable called result. The value
remains there until the next command is executed. If the next command does
not return a result, the value of result is undefined. The following two

C H A P T E R 4

Commands

Double Angle Brackets in Results and Scripts 83

commands show how to use the result variable to set the value of numWords
to the value returned by the Count command:

count words in paragraph 3

set numWords to result

When a direct parameter specifies more than one object, the result is a list that
contains a value for each object that was handled. Here is an example of a
command whose result is a list:

get paragraphs 1 thru 3 of first document

The result is a list of strings similar to the following. The first string is the value
of the first paragraph, the second string is the value of the second paragraph,
and the third string is the value of the third paragraph.

{"This is paragraph one.", "This is paragraph two." ¬

"This is paragraph three."}

Double Angle Brackets in Results and Scripts 4

You may occasionally notice terms like this within double angle brackets in a
script or a result:

«event sysodlog»

In general, AppleScript uses double angle brackets when it can’t locate the
dictionary it needs to identify a term or can’t display a value directly. The first
word within the double angle brackets can be any of these: event, property,
class, data, preposition, keyform, constant, or script. The second
word varies depending on the context.

If double angle brackets appear unexpectedly in a script when you open it with
the Script Editor, it may be because a command used in the script is not present
in the Scripting Additions folder (which is located in the Extensions folder of
the System folder) for your computer. For example, if you create a script that
uses the Display Dialog command, then open the script at a later time or on a

C H A P T E R 4

Commands

84 Command Definitions

different computer when the Display Dialog scripting addition is not present
in the Scripting Additions folder, AppleScript replaces the words display
dialog in the script with «event sysodlog». In this case you should drop
the icon for the Display Dialog scripting addition into the Scripting Additions
folder before attempting to run the script.

Double angle brackets can also occur in results. For example, if the value of a
variable is a script object named Joe, AppleScript represents the script object
as shown in this script:

script Joe

property theCount : 0

end script

set x to Joe

x

--result: «script Joe»

(For more information about script objects, see Chapter 9, “Script Objects.”)

Similarly, if the value of a variable is of class Data and AppleScript can’t
represent the data directly, the value of the data is represented within angle
brackets by the word data followed by some sequence of ASCII characters.
Although this may not resemble the original data, the data’s original format
is preserved. You can treat the data like any other value, except that you
can’t view it directly in any Script Editor window.

Command Definitions 4

The sections that follow are in alphabetical order by command name and
provide definitions for both AppleScript commands and standard application
commands. The general features of these types of commands are described in
“Types of Commands,”which begins on page 71. The command type is listed
opposite the command name on the first line of each definition.

For definitions of commands provided by the scripting additions that come
with AppleScript English, see the AppleScript Scripting Additions Guide. For
definitions of commands provided by other scripting additions, see the
documentation for those scripting additions.

C H A P T E R 4

Commands

Command Definitions 85

The application commands defined in this chapter are standard application
commands supported by most applications. The definitions in this chapter
describe how these commands work in most applications. Individual applica-
tions can extend or change the way the standard application commands work.

Application dictionaries list application commands under two categories, the
Required suite and the Standard suite. All applications support the commands
in the Required suite. Different applications may support different commands
in the Standard suite. Table 4-1 summarizes the standard application
commands described in this chapter that belong to each suite.

Many applications also define their own suite of more specialized commands.
The application’s dictionary provides definitions of all commands supported
by the application. Check the appropriate application dictionary before using
application commands. You can open an application’s dictionary by selecting
the application’s icon on the desktop, dragging it over the Script Editor’s icon,
and releasing the mouse button.

Table 4-1 Standard application commands defined in this chapter

Command Summary

Required suite

Open Opens a file.

Print Prints one or more objects.

Quit Terminates an application.

Run Launches an application and invokes its standard startup
procedures.

Standard suite

Close Closes one or more objects.

Copy Copies an object or objects to the Clipboard or to a
new location.

Count Counts elements of a particular class in an object.

Data Size Returns the size, in bytes, of the value of an object.

Delete Deletes one or more objects.

continued

C H A P T E R 4

Commands

86 Command Definitions

Table 4-2 lists the AppleScript commands defined in this chapter.

Another AppleScript command, the Error command, is described in “Try
Statements,” which begins on page 204.

* Although the target of a Launch command is always an application, it is actually handled by
AppleScript. Unlike the other commands listed in this table, the Launch command doesn’t need
to be explicitly supported by applications and doesn’t appear in any application’s dictionary.

Duplicate Copies an object or objects to a new location.

Exists Determines if an object exists.

Get Returns the value of an object.

Launch* Launches an application without invoking its standard
startup procedures.

Make Creates a new object.

Move Moves an object or objects.

Save Saves an object to a file.

Set Assigns a value to an object.

Table 4-2 AppleScript commands defined in this chapter

Command Summary

Copy Assigns a value to a variable.

Count Counts the elements of a compound value.

Get Returns the value of an expression.

Run Executes statements other than handler and property definitions
in a script object definition.

Set Assigns a value to a variable.

Table 4-1 Standard application commands defined in this chapter (continued)

Command Summary

C H A P T E R 4

Commands

Command Definitions 87

Close application command4

A Close command is a request to close one or more objects.

SYNTAX

close referenceToObject [saving in referenceToFile] [saving saveOption]

PARAMETERS

referenceToObject
A reference to the object or objects to close.
Class: Reference

referenceToFile A reference of the form file nameString or alias nameString
(see “Notes”).
Class: Reference
Default value: The file in which the object was last saved. If the
object hasn’t been saved before, the application creates a file
with the specified name in the current directory.

saveOption A parameter that specifies whether to save an object that has
been modified before closing it. The constant yes specifies that
the object must be saved. The constant no specifies that the
object must not be saved. The constant ask specifies that the
user must be asked whether or not to save the object.
Class: Constant
Default value: The default value is ask, unless you specify a
file in which to save the object, in which case the default value
is yes.

RESULT

None

C H A P T E R 4

Commands

88 Command Definitions

EXAMPLES

tell application "Scriptable Text Editor"

close window "Tremendous" saving Yes

end tell

tell application "Scriptable Text Editor"

close saving in file "Macintosh HD:Documents:Report"

end tell

NOTES

To specify the name (nameString) of a file in which to save the object, use a
string of the form "Disk:Folder1:Folder2:...:Filename"; for details, see
“References to Files,” which begins on page 144. You can also specify a string
with only a filename ("Filename"). In this case, the application attempts to find
the file in the current directory. If it can’t find the specified file, the application
creates a file with the specified name in the current directory.

Copy AppleScript command, application command4

The Copy command can function as an AppleScript command or an application
command. The AppleScript command makes a copy of one or more values and
stores it in one or more variables.

The application command is a request to copy an object or objects. If the
command includes a direct parameter, the Copy command makes a copy of one
or more objects specified in the direct parameter and puts them in one or more
new locations (if any are specified) or on the Clipboard (if no new location is
specified).

If the command does not include a direct parameter, the Copy command
makes a copy of the object or objects in the current selection and puts them
on the Clipboard. This is the same as choosing Copy from the Edit menu in
an application.

As shown in the syntax definitions that follow, put and into are synonyms for
copy and to. When you compile a script, put and into are automatically
changed to copy and to.

C H A P T E R 4

Commands

Command Definitions 89

APPLESCRIPT COMMAND SYNTAX

(copy | put) expression (to | into) variablePattern

APPLICATION COMMAND SYNTAX

(copy | put) expression (to | into) referencePattern

(copy | put) [referenceToObject]

PARAMETERS

expression The expression whose value is to be assigned. If expression is a
reference or a list or record of references, AppleScript gets the
values of the objects specified by the references.
Class: Any class

variablePattern
The name of the variable in which to store the value, or a list of
variable patterns, or a record of variable patterns.
Class: Identifier, list, or record

referencePattern
A reference to the location to which to copy expression, a list of
reference patterns, or a record of reference patterns.
Class: Reference, list, or record
Default value: If you do not specify a new location, the object
specified in the direct parameter is copied and put on the
Clipboard.

referenceToObject
A reference to the object or objects to be copied, or a list of
reference patterns, or a record of reference patterns.
Class: Reference, list, or record
Default value: If this parameter is omitted, the object or objects in
the current selection are copied and put on the Clipboard.

RESULT

If the Copy command is used to create a variable, the result is the value that
was stored in the variable. If the command is used to copy an object, the result

C H A P T E R 4

Commands

90 Command Definitions

is a reference to the copied object; however, if the command does not include
parameters, there is no result.
Class: Varies

EXAMPLES

This example copies a string to the variable myOccupation:

copy "writer" to myOccupation

This example copies the value of a reference to the variable x:

copy word 1 of front document of app "Scriptable Text Editor" to x

This example makes a copy of a word, and then inserts it at the beginning of
the fourth paragraph:

tell application "Scriptable Text Editor"

copy word 1 to beginning of paragraph 4

end tell

The next example copies a word to the Clipboard and then pastes it from the
Clipboard to the insertion point after the tenth paragraph.

tell application "Scriptable Text Editor"

select word 1 of document "Test"

copy

select insertion point after paragraph 10 of document "Test"

paste

end tell

In addition to copying a value to a single variable or object, you can copy
patterns of values to patterns of variables. For example, this script copies
the position of the front window to a list of two variables:.

tell application "Scriptable Text Editor"

copy position of front window to {x, y}

end tell

C H A P T E R 4

Commands

Command Definitions 91

Since the Scriptable Text Editor returns position of front window as a
list of two integers, the preceding example copies the first item in the list to x
and the second item in the list to y.

Patterns copied with the Copy command can also be more complex. Here’s
an example:

set x to {8, 94133, {firstName:"John", lastName:"Chapman"}}

copy x to {p, q, {lastName:r}}

(* now p, q, and r have these values: p = 8

 q = 94133

 r = "Chapman" *)

As this example demonstrates, the properties of a record need not be given in
the same order and need not all be used when you copy a pattern to a pattern,
as long as the patterns match.

The use of the Copy command with patterns is similar to the use of the Set
command with patterns. For information about the Set command, see page 113.

NOTES

For more information about using the Copy command to create or change the
values of variables, see “Variables,” which begins on page 150.

If you use the Copy command without parameters and there is no selection to
be copied, the application does not change the contents of the Clipboard.

When copying objects between applications via the Clipboard, you must
use the Activate command to make the receiving application active before
attempting to paste from the Clipboard.

ERRORS

Error
number Error message

–1728 Can't get <reference>.

–10006 Can't set <destination> to <source>.

C H A P T E R 4

Commands

92 Command Definitions

Count AppleScript command, application command4

The Count command can function as an AppleScript command or an
application command. The AppleScript command counts the number of
elements of a particular class in a list, record, or string. The application
command counts the number of elements of a particular class in an object
or objects.

APPLESCRIPT COMMAND SYNTAX

count [[each | every] className (in | of)] compoundValue

number of [pluralClassName (in | of)] compoundValue

APPLICATION COMMAND SYNTAX

count [each | every] className [(in | of) referenceToObject]

number of className [(in | of) referenceToObject]

PARAMETERS

className The class name of the elements to be counted. If you use the
term each or every, you can use only the singular form of the
class name. The elements of lists, records, and strings are listed
in the value class definitions in Chapter 3, “Values.” The
elements of application objects are listed in their object class
definitions in the application dictionary.
Class: Class identifier
Default value: Item for lists, records, and application objects;
Character for strings (see “Notes”)

compoundValue
An expression that evaluates to a compound value whose
elements are to be counted.
Class: List, record, reference, or string

C H A P T E R 4

Commands

Command Definitions 93

pluralClassName
The plural class name of the elements to be counted. The
elements of lists, records, and strings are listed in the value
class definitions in Chapter 3, “Values.”
Class: Class identifier
Default value: Item for lists, records, and application objects;
Character for strings (see “Notes”)

referenceToObject
A reference to the object or objects whose elements are to be
counted. If you do not specify this parameter, the application
counts the elements in the default target of the Tell statement.
Class: List, record, reference, or string

RESULT

The result of the AppleScript command is an integer that specifies the number
of elements of a specified class in a compound value.

The result of the application command is either an integer or a list of integers.
See “Notes” for details.

Class: Integer or list of integers

EXAMPLES

In the following example, compoundValue is a list. The command does not
explicitly specify a class of elements to count, so AppleScript counts all the
items in the list.

count {"Yes", "No", "Maybe", 4, 5, 6}

--result: 6

In this example, className is integers and referenceToObject is a list of strings
and integers. AppleScript counts the integers in the list.

count integers in {"Yes", "No", "Maybe", 4, 5, 6}

--result: 3

C H A P T E R 4

Commands

94 Command Definitions

This example shows another way to count the integers in the list:

count each integer in {"Yes", "No", "Maybe", 4, 5, 6}

--result: 3

In the following example, every word of document "simple" consists of
a list of words. The Scriptable Text Editor counts the words in the list.

tell application "Scriptable Text Editor"

count every word of document "simple"

end tell

--result: 12

The following statement is equivalent to the previous example:

tell application "Scriptable Text Editor"

count words of document "simple"

end tell

In the following example, referenceToObject is documents of application
"Scriptable Text Editor", which is a list of documents. The Scriptable
Text Editor counts the documents in the list.

tell application "Scriptable Text Editor"

repeat with i from 1 to (count of documents)

set the style of paragraph 1 of document i to ¬
{outline, bold}

end repeat

end tell

NOTES

If you use the Count command on a string without specifying the class to be
counted, AppleScript counts the characters; for example,

count "This is a string"

--result: 16

C H A P T E R 4

Commands

Command Definitions 95

The result of the Count command depends on how you specify the range of
objects to be counted. For example, consider the following statement, given the
Scriptable Text Editor document in Figure 4-2:

tell document "simple" of app "Scriptable Text Editor"

count words from paragraph 2 to paragraph 3

end tell

--result: 8

Figure 4-2 The Scriptable Text Editor document “simple”

The reference words from paragraph 2 to paragraph 3 specifies a list
of the words in the second and third paragraphs:

{"This", "is", "paragraph", "two.", ¬
"This", "is", "paragraph", "three."}

Each item in the list is a word. The Scriptable Text Editor counts the items in
the list and returns the result 8.

Sometimes the Count command returns a list of integers. Consider the
following statement:

tell document "simple" of app "Scriptable Text Editor"

count words of paragraphs 2 thru 3

end tell

--result: {4, 4}

C H A P T E R 4

Commands

96 Command Definitions

The counting in this example requires several steps, beginning with the
reference to the outermost container. The reference paragraphs 2 thru 3
specifies a list of two items, each of which is a paragraph:

{"This is paragraph two.", "This is paragraph three."}

On the basis of this list, the Scriptable Text Editor evaluates the reference
words of paragraphs 2 thru 3 as a list of two items, each of which is
a list of the words in one paragraph:

{{"This", "is", "paragraph", "two."}, ¬

"This, "is", "paragraph", "three."}}

Finally, the Scriptable Text Editor counts the items in each list and returns a list
of two items, each of which specifies the number of words in one paragraph:
{4, 4}.

References to nested containers are always evaluated before counting takes
place, beginning with the outermost container. Here’s another example:

tell document "simple" of app "Scriptable Text Editor"

count characters of words of paragraphs 2 thru 3

end tell

--result: {{4, 2, 9, 3}, {4, 2, 9, 5}}

The previous example demonstrated that the reference words of
paragraphs 2 thru 3 specifies a list of two items, each of which is a
list of the words in one paragraph:

{{"This", "is", "paragraph", "two."}, ¬

{"This, "is", "paragraph", "three."}}

The Scriptable Text Editor counts the items in each list and returns a list of two
items, each of which is a list of the number of characters in each of the words in
one paragraph:

{{4, 2, 9, 3}, {4, 2, 9, 5}}

C H A P T E R 4

Commands

Command Definitions 97

Data Size application command4

A Data Size command is a request for the size, in bytes, of the data of one or
more objects. The value returned is the size of the data (a value) that would
result from a Get command on the same object or objects.

SYNTAX

data size of referenceToObject [as className]

PARAMETERS

referenceToObject
A reference to the object or objects whose data size is to be
returned.
Class: Reference

className The class of data for which to determine the size (see “Notes”).
Class: Class identifier
Default value: The default value class for the object

RESULT

The size, in bytes, of the object or objects.

If the referenceToObject parameter specifies a single object only (such as word 1
or the last word), the result is a single integer that specifies the size of the
object in bytes. If the specified object doesn’t exist, for example, if the reference
is word 12 and there are fewer than 12 words in the specified container, the
application returns an error.

If the referenceToObject parameter refers to more than one object (such as the
words whose first letter is "B"), the result is a list of integers. The
first item in the list is the size of the first object specified, the second item is the
size of the second object specified, and so on. If the specified objects don’t exist,
for example, if the reference is the words whose first letter is "B"
and there are no words that begin with “B”, the result is an empty list.

Class: Integer or list of integers

C H A P T E R 4

Commands

98 Command Definitions

EXAMPLE

set theSize to the data size of paragraph 1 through 10

NOTES

As described in the definition of the Get command, the data of some
application objects can be returned as values of different classes. Because the
size of the data returned as different classes can be different, the Data Size
command includes an optional class parameter that allows you to specify the
class of the data.

Delete application command4

A Delete command is a request to delete one or more objects.

SYNTAX

delete referenceToObject

PARAMETER

referenceToObject
A reference to the object or objects to be deleted.
Class: Reference

RESULT

None

EXAMPLE

tell document "Intro" of app "Scriptable Text Editor"

delete words 1 through 5

end tell

C H A P T E R 4

Commands

Command Definitions 99

Duplicate application command 4

A Duplicate command is a request to make a copy of an object or objects and
insert the new copy either at a location specified in the command or at the
location following the object that was copied.

SYNTAX

duplicate referenceToObject [to newLocation]

PARAMETERS

referenceToObject
A reference to the object or objects to be duplicated.
Class: Reference

newLocation
The new location for the object.
Class: Reference
Default value: If you do not specify a new location, the object is
inserted at the location immediately following the object
specified in the direct parameter.

RESULT

A reference to the new object.

Class: Reference

Exists application command 4

An Exists command is a request to determine whether the object specified by a
reference exists.

SYNTAX

referenceToObject exists

exists referenceToObject

C H A P T E R 4

Commands

100 Command Definitions

PARAMETER

referenceToObject
A reference to the object or objects to find.
Class: Reference

RESULT

If true, all of the objects referred to by referenceToObject exist. If false, one or
more of the objects referred to by referenceToObject do not exist.
Class: Boolean

EXAMPLES

tell document "Tremendous" of app "Scriptable Text Editor"

if word 7 exists then

delete word 7

end if

end tell

tell application "Scriptable Text Editor"

if exists front document then

print front document

end if

end tell

Get AppleScript command, application command4

The Get command can function as an AppleScript command or an application
command. The AppleScript command returns the value of an expression.
The application command returns the value of an object. In both cases, the
command assigns the value returned to the predefined variable result.

C H A P T E R 4

Commands

Command Definitions 101

APPLESCRIPT COMMAND SYNTAX

[get] expression [as className]

APPLICATION COMMAND SYNTAX

[get] referenceToObject [as className]

PARAMETERS

expression An expression whose value is to be returned in the
result variable.
Class: Any AppleScript expression

className A class identifier that specifies the desired value class for
the returned data.
Class: Class
Default value: The default value class for the object or objects

referenceToObject
A reference to an object whose value is to be returned in the
result variable.
Class: Reference

RESULT

The result is the value of the specified reference or expression.

If the referenceToObject parameter specifies a single object only (such as word 1
or the last word), the result is a single value. If the specified object doesn’t
exist, for example, if the reference is word 12 and there are fewer than 12
words in the specified container, no result is returned.

If the referenceToObject parameter refers to more than one object (such as the
words whose first letter is "B"), the result is a list of values. The
first item in the list is the value of the first object specified, the second item is
the value of the second object specified, and so on. If the specified objects don’t
exist, for example, if the reference is the words whose first letter is
"B" and there are no words that begin with “B”, the result is an empty list.

Class: The class specified by the className parameter or a list of values of that
class. If the application cannot return data in the value class specified by the
className parameter, it returns a value or values of the default value class.

C H A P T E R 4

Commands

102 Command Definitions

EXAMPLE

tell application "Scriptable Text Editor"

get paragraph 3 --gets the value

copy result to item 2 of x --puts the result

end tell

NOTES

The word get in the Get command is optional because AppleScript
automatically gets the value of expressions and references when they
appear in scripts.

For example, the following statements are equivalent:

item 1 of {"Hi,", "how", "are", "you?"}

get item 1 of {"Hi,", "how", "are", "you?"}

The following statements are also equivalent:

tell application "Scriptable Text Editor"

word 1 of document "Introduction"

end tell

tell application "Scriptable Text Editor"

get word 1 of document "Introduction"

end tell

ERROR

Error
number Error message

–1728 Can't get <reference>.

C H A P T E R 4

Commands

Command Definitions 103

Launch application command4

If an application is not already running, sending it a Launch command
launches it without sending a Run command. (If the application is already
running, the Launch command has no effect.) This allows an application
to open without performing its usual startup procedures, such as opening a
new window or, in the case of a script application, running the script.

SYNTAX

launch [referenceToApplication]

PARAMETER

referenceToApplication
A reference of the form application nameString (see “Notes”).
This parameter is optional if the Launch command is used
within an appropriate Tell statement.
Class: Reference

RESULT

None

EXAMPLES

launch application "Scriptable Text Editor"

tell application "Scriptable Text Editor"

launch

end tell

NOTES

To specify the name (nameString) of an application to launch, use a string of the
form "Disk:Folder1:Folder2:...:ApplicationName"; for details, see “References
to Applications,” which begins on page 146. You can also specify a string with
only an application name ("ApplicationName"). In this case, AppleScript attempts
to find the application in the current directory.

C H A P T E R 4

Commands

104 Command Definitions

AppleScript sends an implicit Run command whenever it begins to execute a
Tell statement whose target is an application that is not already open. This
can cause problems with applications such as the Scriptable Text Editor that
normally perform specific tasks on startup, such as opening a new window.
Here’s an example:

tell application "Scriptable Text Editor"

open file "Hard Disk:Status Report"

end tell

Before AppleScript opens the file Status Report, it sends an implicit Run
command to Scriptable Text Editor. If the application is not already open,
the Run command causes Scriptable Text Editor not only to launch but also
to perform its usual startup tasks, including opening an untitled window.
Therefore, running this script opens two windows: an untitled window and
a window for the file Status Report.

If you don’t want AppleScript to send an implicit Run command when it
launches an application as the result of a Tell statement, use the Launch
command explicitly at the beginning of the statement:

tell application "Scriptable Text Editor"

launch

open file "Hard Disk:Status Report"

end tell

In this case, AppleScript launches the application without sending it a Run
command, and the application opens only a window for the requested
document.

For similar reasons, it is sometimes important to use the Launch command
before sending the Run command to a script application. For more information,
see “Calling a Script Application,” which begins on page 251. For information
about Run handlers, see “Run Handlers,” which begins on page 243.

Although the target of a Launch command is always an application, it is
actually handled by the Finder. Unlike the other application commands defined
in this chapter, it doesn’t need to be explicitly supported by applications and
doesn’t appear in any application’s dictionary.

C H A P T E R 4

Commands

Command Definitions 105

Make application command4

A Make command is a request to create a new object. The command can
include values for properties of the object, for the data of the object, or both.

SYNTAX

make [new] className at referenceToLocation ¬

[with properties ¬

{ propertyLabel:propertyValue [, propertyLabel:propertyValue]...}] ¬

[with data dataValue]

PARAMETERS

className The class of the object to be created.
Class: Class identifier

referenceToLocation
The location at which to create the new object.
Class: Reference

propertyLabel The name of a property whose value is to be set.
Class: String

propertyValue The value to assign to the property.
Class: The value class of the property, as specified in the
application dictionary definition of the object class being
created, or a value that can be coerced into the class of
the property
Default value: The default value of the property, as specified
in the application dictionary definition of the object class
being created

dataValue The value to assign to the object.
Class: The default value class of the object, or a value that can
be coerced into the default value class. Default value classes
of objects are listed in the “Default Value Class Returned”
sections of the dictionary definitions of the objects.
Default value: None

C H A P T E R 4

Commands

106 Command Definitions

RESULT

A reference to the newly created object.

Class: Reference

EXAMPLE

tell application "Scriptable Text Editor"

make window at beginning with properties ¬
{bounds:{400, 300, 500, 600}, contents:"This window is narrow."}

end tell

NOTES

If you use the Make command to create a new text object, check the application
dictionary to determine how the application handles delimiters. Some
applications, such as the Scriptable Text Editor, supply delimiters
automatically, so you don’t have to include them in the value of the with
data parameter.

Move application command4

A Move command is a request to move an object or objects.

SYNTAX

move referenceToObject to referenceToLocation

PARAMETERS

referenceToObject
A reference to the object or objects to move.
Class: Reference

C H A P T E R 4

Commands

Command Definitions 107

referenceToLocation
A reference to the location to which to move the object or objects.
Class: Reference

RESULT

A reference to the object that was moved.

Class: Reference

EXAMPLE

tell front document of app "Scriptable Text Editor"

move word 10 to before paragraph 11

end tell

Open application command4

An Open command is a request to open a file or files.

SYNTAX

open referenceToFile

PARAMETER

referenceToFile
A reference of the form file nameString or alias nameString,
or a list of such references (see “Notes”).
Class: Reference or list of references

RESULT

None

C H A P T E R 4

Commands

108 Command Definitions

EXAMPLE

tell app "Scriptable Text Editor"

open file "Macintosh HD:New Products:Mammoth:Product Intro"

end tell

tell app "Scriptable Text Editor"

open { file "HD:Letters:Offer", file "HD:Letters:Acceptance"}

end tell

NOTES

To specify the name (nameString) of a file to open, use a string of the form
"Disk:Folder1:Folder2:...:Filename"; for details, see “References to Files,”
which begins on page 144. You can also specify a string with only a filename
("Filename"). In this case, the application attempts to find the file in the
current directory.

If the file or files specified by referenceToFile is already open, it remains open.

Print application command4

A Print command is a request to print one or more objects.

SYNTAX

print referenceToObject

PARAMETER

referenceToObject
A reference to the object or objects to print—typically file(s),
document(s), or window(s).
Class: Reference or list of references

RESULT

None

C H A P T E R 4

Commands

Command Definitions 109

EXAMPLES

tell application "Scriptable Text Editor"

print document "Introduction"

end tell

tell application "Scriptable Text Editor"

print windows 1 thru 5

end tell

tell application "Scriptable Text Editor"

print { file "HD:Letters:Zoning Department", ¬
file "HD:Letters:Mayor"}

end tell

NOTES

To specify the name of a file to print, use the term file or alias followed by
a string of the form "Disk:Folder1:Folder2:...:Filename"; for details, see
“References to Files,” which begins on page 144. You can also specify a string
with only a filename ("Filename"). In this case, the application attempts to find
the file in the current directory.

Quit application command4

A Quit command is a request for an application to terminate. If no optional
parameters are specified, the Quit command has the same result as choosing
the Quit menu item in the application.

SYNTAX

quit referenceToApplication [saving saveOption]

C H A P T E R 4

Commands

110 Command Definitions

PARAMETERS

referenceToApplication
A reference of the form application nameString, where
nameString is a string that matches the name of the application
you want to quit as it is listed in the Application menu.
Class: Reference

saveOption A constant that specifies whether to save documents that have
been modified before quitting. The possible values are yes, no,
and ask. The value yes specifies to save the documents. The
value no specifies not to save the documents. The value ask
specifies to ask the user whether or not to save the documents.
Class: Constant
Default Value: ask

RESULT

None

EXAMPLES

tell application "Scriptable Text Editor"

quit saving no

end tell

quit application "Scriptable Text Editor" saving ask

Run AppleScript command, application command4

The Run command can function as an AppleScript command or an application
command.

The AppleScript Run command acts on script objects; it executes statements
other than handler and property definitions in script object definitions.

The application Run command launches an application if it’s not already
running. The application must be on a local or mounted volume. If the
application is already running, then the effect of the Run command depends

C H A P T E R 4

Commands

Command Definitions 111

on the application. Some applications are not affected; others, such as the
Scriptable Text Editor, repeat their startup procedures each time they receive
a Run command.

APPLESCRIPT COMMAND SYNTAX

run [scriptObjectVariable]

APPLICATION COMMAND SYNTAX

run [referenceToApplication]

PARAMETERS

scriptObjectVariable
A variable identifier whose value is a script object. This
parameter is optional if the Run command is used within
an appropriate Tell statement.
Class: Script

referenceToApplication
A reference of the form application nameString (see “Notes”).
This parameter is optional if the Run command is used within
an appropriate Tell statement.
Class: Reference

RESULT

The AppleScript Run command returns the result, if any, returned by the
specified script object’s Run handler.

The application Run command doesn’t return a result.

EXAMPLES

run application "Scriptable Text Editor"

tell application "Scriptable Text Editor"

run

end tell

C H A P T E R 4

Commands

112 Command Definitions

NOTES

To specify the name (nameString) of an application to run, use a string of the
form "Disk:Folder1:Folder2:...:ApplicationName"; for details, see “References
to Applications,” which begins on page 146. You can also specify a string with
only an application name ("ApplicationName"). In this case, if the application
is not already running, AppleScript attempts to find the application in the
current directory.

AppleScript sends an implicit Run command whenever it begins to execute a
Tell statement whose target is an application that is not already open. This can
cause problems with applications such as Scriptable Text Editor that normally
perform specific tasks on startup, such as opening a new window. To launch an
application without invoking its usual startup behavior, use the Launch
command as described on page 103. For information about using the Run and
Launch commands with script applications, see “Calling a Script
Application,”which begins on page 251.

For information about Run handlers, see “Run Handlers,” which begins on
page 243. For information about using the Run command with script objects,
see Chapter 9, “Script Objects.”

Save application command4

A Save command is a request to save an object or objects.

SYNTAX

save referenceToObject [in referenceToFile]

PARAMETERS

referenceToObject
A reference to the object or objects to be saved.
Class: Reference

C H A P T E R 4

Commands

Command Definitions 113

referenceToFile A reference of the form file nameString or alias nameString
that specifies the file in which to save the objects (see “Notes”).
Class: Reference
Default value: The file in which the object was last saved. If
the object has not been saved before, the application creates a
new file.

RESULT

None

EXAMPLE

save document "Stupendous" in file "Elephantine"

NOTES

To specify the name (nameString) of a file in which to save the specified object or
objects, use a string of the form "Disk:Folder1:Folder2:...:Filename"; for
details, see “References to Files,” which begins on page 144. You can also specify
a string with only a filename ("Filename"). In this case, the application attempts
to find the file in the current directory.

If you use the form file nameString and the specified file is not present in the
specified location, the application creates a file with the specified name in that
location. If you use the form alias nameString and the specified file is not
present in the specified location, the script won’t compile.

Set AppleScript command, application command4

The Set command can function as an AppleScript command or an application
command. The AppleScript command assigns one or more values to one
or more variables. It can also be used to share data among lists, records, or
script objects (see “Notes”). The application command sets the values of one
or more objects.

C H A P T E R 4

Commands

114 Command Definitions

APPLESCRIPT COMMAND SYNTAX

set variablePattern to expression

expression returning variablePattern

APPLICATION COMMAND SYNTAX

set referencePattern to expression

expression returning referencePattern

PARAMETERS

variablePattern The name of the variable in which to store the value, or a list of
variable patterns, or a record of variable patterns.
Class: Identifier, list, or record

expression The expression whose value or values are to be assigned.
If expression is a reference or a list or record of references,
AppleScript gets the values of the objects specified by
the references.
Class: For a variable, any class.

referencePattern
A reference to the location whose value is to be set, or a list of
reference patterns, or a record of reference patterns.
Class: Reference, list, or record

RESULT

The value assigned.

C H A P T E R 4

Commands

Command Definitions 115

EXAMPLES

You can use the Set command to set a variable to any value:

set x to 5

set myList to { 1, 2, "four" }

tell application "Scriptable Text Editor"

set x to word 1 of front document

end tell

These two statements are equivalent:

set x to 3

3 returning x

Similarly, the following examples are equivalent:

tell front document of application "Scriptable Text Editor"

set x to word 1

end tell

tell front document of application "Scriptable Text Editor"

word 1 returning x

end tell

In addition to setting a variable to a single value, you can set patterns of
variables to patterns of values. For example, this script sets a list of two
variables to the position of the front window.

tell application "Scriptable Text Editor"

set {x, y} to position of front window

end tell

Since the Scriptable Text Editor returns position of front window as a
list of two integers, the preceding example sets x to the first item in the list and
y to the second item.

C H A P T E R 4

Commands

116 Command Definitions

Patterns set with the Set command can also be more complex. Here are
some examples:

set x to {8, 94133, {firstName:"John", lastName:"Chapman"}}

set {p, q, r} to x

(* now p, q, and r have these values:

p = 8

q = 94133

r = {firstName:"John", lastName:"Chapman"} *)

tell front document of application "Scriptable Text Editor"

set {word 1, word 2} to ¬

{firstName of item 3 of x, lastName of item 3 of x}

end tell

--now word 1 = "John" and word 2 = "Chapman"

set {p, q, {lastName:r}} to x

(* now p, q, and r have these values: p = 8

 q = 94133

 r = "Chapman" *)

As the last example demonstrates, the properties of a record need not be given
in the same order and need not all be used when you set a pattern to a pattern,
as long as the patterns match.

The use of the Set command with patterns is similar to the use of patterned
parameters with subroutines, which is described in “Subroutines With
Positional Parameters,” beginning on page 235.

C H A P T E R 4

Commands

Command Definitions 117

NOTES

If you use the Set command to set a variable to a list, record, or script object, the
variable shares data with the original list, record, or script object. If you change
the data of the original, the value of the variable also changes. Here’s an
example of how this works:

set myList to { 1, 2, 3 }

set yourList to myList

set item 1 of myList to 4

The result of these statements is that item 1 of both myList and yourList is 4.

Data sharing promotes efficiency when using large data structures. Rather than
making copies of shared data, the same data can belong to multiple structures.
When one structure is updated, the others are automatically updated.

IMPORTANT

To avoid data sharing for lists, records, and script objects,
use the Copy command instead of the Set command. ▲

Only data in lists, records, and script objects can be shared; you cannot share
other values. Moreover, you can share data only on the same computer, and the
shared structures must all be in the same script.

Using Object Class Definitions 119

C H A P T E R 5

Objects and References 5Figure 5-0
Listing 5-0
Table 5-0

Objects are the things in applications, the Operating System, or AppleScript
that can respond to commands. For example, application objects are objects
stored in applications and their documents. Usually, they are identifiable items
that users can manipulate in applications, such as windows, words, characters,
and paragraphs in a text-editing application. Objects can contain data, in the
form of values, properties, and elements, that can change over time.

Each object belongs to an object class, which is a category for objects that have
similar characteristics and respond to the same commands. To find out what
types of data an object contains, or which commands it can respond to, you
can check its object class definition. To refer to objects from scripts, you use
references, which are compound names, similar to paths or addresses, that
identify objects or groups of objects.

This chapter describes how to interpret object class definitions and how to use
references to specify objects. For examples of object class definitions provided
by an application, see “Scriptable Text Editor Object Class Definitions,” which
begins on page 318.

Most objects are contained in applications. It is also possible to create another
type of object, called a script object, that can be stored in scripts or saved in
files. For information about script objects, see Chapter 9, “Script Objects.”

Using Object Class Definitions 5

Object class definitions describe what objects that belong to a particular class
have in common. This guide contains object class definitions for system objects
(in this chapter) and Scriptable Text Editor objects (in Appendix B). This section
describes the information contained in object class definitions.

C H A P T E R 5

Objects and References

120 Using Object Class Definitions

Figure 5-1 shows a sample object class definition for a paragraph object. The
definition contains four types of information: properties, element classes,
commands handled, and default value class returned. The sections that follow
describe the kinds of information provided by an object class definition.

Properties 5

A property of an object is a characteristic that has a single value, such as the
name of a window or the font of a character. Properties are contained by objects
in much the same way that elements are. The main difference is that each of
an object’s properties has only one value, whereas an object may have many
different elements of a single class. Properties of an object are distinguished
from each other by their unique labels.

The definitions for two properties (from a total of six) are visible in the object
class definition shown in Figure 5-1. These properties’ labels are Font and Size.
The definition also lists the class to which each property belongs. For example,
the class of the Font property is String, indicating that the value of the Font
property is a character string. Properties can belong to object or value classes.

Element Classes 5

Elements are objects contained within an object. The element classes listed in
an object class definition indicate what kinds of elements objects of that object
class can contain. An object can contain many elements or none, and the
number of elements of a particular class that it contains may change over time.
Most application and system objects can contain elements.

The definition in Figure 5-1 shows that a paragraph object can include word
elements. It is possible for a paragraph to have no words. At a later time, the
same paragraph might have many words.

Commands Handled 5

Objects that belong to the same class can respond to the same commands.
Object class definitions list the commands to which all objects of that
class respond.

C H A P T E R 5

Objects and References

Using Object Class Definitions 121

Figure 5-1 The Scriptable Text Editor’s object class definition for paragraph objects

Paragraph

ELEMENT CLASSES

Characters contained in the paragraphs
Paragraphs contained in the paragraphs
Series of characters contained in the paragraphs
Text items contained in the paragraphs
Words contained in the paragraphs

Character
Paragraph
Text
Text item
Word

DEFAULT VALUE CLASS RETURNED

Styled Text

An object of class Paragraph is a text object that‘s delimited by return
characters or by the beginning or end of the container.

PROPERTIES

Font

Size

The name of the font of the characters of the paragraph. If the
font varies within the paragraph, the Font property specifies
the font of the first character.
Class: String
Modifiable? Yes

The size, in points, of the characters of the paragraph. If the
size varies within the paragraph, the Size property specifies
the size of the first character.
Class: Integer
Modifiable? Yes

See "Elements of Text Objects" on page 314 for a general discussion of
these element classes.

COMMAND HANDLED

Copy, Count, Cut, Data Size, Delete, Exists, Get, Make, Move, Select, Set

C H A P T E R 5

Objects and References

122 References

The definition in Figure 5-1 shows that all paragraph objects respond to
the Copy, Count, Cut, Data Size, Delete, Exists, Get, Make, Move, Select,
and Set commands.

Default Value Class Returned 5

Each object has a value. For example, the value of a paragraph object is a string
that includes style and font information. You can get the value of a system or
application object by sending it a Get command or simply referring to it in a
script. If the Get command doesn’t specify a value class for the value returned,
the default value class is used. For example, according to the definition of a
paragraph in Figure 5-1 a Get command that specifies a paragraph without
specifying a value class returns styled text.

References 5

A reference is a phrase that specifies one or more objects. You use references to
identify objects within applications. An example of a reference is

word 5 of paragraph 10 of document "Work in Progress"

which specifies a word object in the document named Work in Progress.

A reference describes what type of object you’re looking for, where to look for
the object, and how to distinguish the object from other objects of the same
type. These three types of information—the class, or type; the container, or
location; and the reference form, or distinguishing information—allow you to
specify any object of an application.

In general, you list the class and distinguishing information at the beginning of
a reference, followed by the container. In the previous example, the class of the
object is word. The container is the phrase paragraph 10 of document
"Work in Progress". The distinguishing information (the reference form) is
the combination of the class, word, and an index value, 5, which together
indicate the fifth word.

C H A P T E R 5

Objects and References

References 123

References allow you to identify objects in a flexible and intuitive way. Just as
there might be several ways to identify an object on the desktop, AppleScript
has different reference forms that allow you to specify the same object in
different ways. For example, here’s another way to specify the fifth word of
a document:

word after word 4 of document "Work in Progress"

To write effective scripts, you should be familiar with AppleScript’s reference
forms and know how to use containers and reference forms to identify the
objects you want to manipulate. The sections that follow describe containers
and reference forms.

Containers 5

A container is an object that contains one or more objects or properties. In a
reference, the container specifies where to find an object or a property. To
specify a container, use the word of or in, as in

word 5 of paragraph 10

and

character 2 in word 12

where word 5 is contained in a paragraph object and character 2 is
contained in a word object.

A container can be an object or a series of objects. In a series, list the smallest
object first, followed by the larger objects that contain it. Use the word of or in
to separate each object from its larger, containing object. For example, in

word 5 of paragraph 10 of document "Report"

word 5 is contained by the larger object, paragraph 10; paragraph 10 is
contained by the larger object document "Report".

C H A P T E R 5

Objects and References

124 References

You can also use the possessive form ('s) to specify containers. If you use the
possessive form, list the container before the object it contains. For example, in

first window's name

the container is first window. The object it contains is a Name property.

All properties and elements have containers. The previous example
specified the Name property of a window, which is contained in a window
object. Similarly, the following example specifies the Style property, which
is contained in a character object.

style of first character

Complete and Partial References 5

A complete reference has enough information to identify an object or objects
uniquely. For a reference to an application object to be complete, its outermost
container must be the application itself, as in

paragraph 10 of document "Report" of application ¬
"Scriptable Text Editor"

In contrast, partial references do not specify enough information to identify an
object or objects uniquely; for example:

word 1 of paragraph 10

When AppleScript encounters a partial reference, it attempts to use the default
target specified in the Tell statement to complete the reference. The default
target of a Tell statement is the object that receives commands if no other object
is specified. For example, the following Tell statement tells the Scriptable Text
Editor to delete the first paragraph of the front document.

tell paragraph 1 of front document of application ¬
"Scriptable Text Editor"

delete

end tell

C H A P T E R 5

Objects and References

Reference Forms 125

Similarly, the following Tell statement tells the Scriptable Text Editor to delete
the third word of the first paragraph of the front document.

tell paragraph 1 of front document of application ¬
"Scriptable Text Editor"

delete word 3

end tell

Tell statements can contain other Tell statements, called nested Tell statements.
When AppleScript encounters a partial reference in a nested Tell statement, it
tries to complete the reference starting with the innermost Tell statement. If that
does not provide enough information, AppleScript uses the direct object of the
next Tell statement, and so on. For example, the following Tell statement is
equivalent to the previous example.

tell front document of application "Scriptable Text Editor"

tell paragraph 1

tell word 3

delete

end tell

end tell

end tell

Reference Forms 5

A reference form is the syntax, or rule, for writing a phrase that identifies an
object or group of objects. For example, the Index reference form allows you to
identify an object by its number, as in

word 5 of paragraph 10

AppleScript includes other reference forms for identifying objects in
applications. Table 5-1 summarizes the reference forms you can use to identify
objects. Each section that follows includes a brief explanation of the reference
form, a syntax summary, and examples of how to use the reference form to
specify application objects. The Filter reference form is described in more detail
in “Using the Filter Reference Form,” which begins on page 140.

C H A P T E R 5

Objects and References

126 Reference Forms

Arbitrary Element 5

The Arbitrary Element reference form specifies an arbitrary object in a
container. If the container is a value (such as a list), AppleScript chooses
an object at random (that is, it uses a random-number generator to choose
the object). If the container is an application object, it is up to the application
to choose an object. It can choose a random object or any object at all.

SYNTAX

some className

where

className is the class identifier for the desired object.

Table 5-1 Reference forms

Reference form Purpose

Arbitrary Element Specifies an arbitrary object in a container

Every Element Specifies every object of a particular class in a container

Filter Specifies every object in a particular container that
matches conditions defined in a Boolean expression

ID Specifies an object by its ID property

Index Specifies the position of an object with respect to the
beginning or end of a container

Middle Element Specifies the middle object in a container

Name Specifies an object by its Name property

Property Specifies a property of an application object, a record,
a script object, or a date

Range Specifies a series of objects

Relative Specifies the position of an object in relation to
another object

C H A P T E R 5

Objects and References

Reference Forms 127

EXAMPLES

some word of paragraph 5

some word whose style contains outline

Every Element 5

The Every Element reference form specifies every object of a particular class in
a container.

SYNTAX

every className

pluralClassName

where

className is a singular class name (such as word or paragraph).

pluralClassName is the plural form defined by AppleScript or an application
(such as words or paragraphs). The plural form of an object class name has
the same effect as the word every before an object class name. Plural forms are
listed in application dictionaries.

VALUE

The value of an Every Element reference is a list of the objects in the container.
If the container does not contain any objects of the specified class, the list is an
empty list. For example, the value of the expression

every paragraph of {1, 2, 3}

is the empty list:

{}

C H A P T E R 5

Objects and References

128 Reference Forms

EXAMPLES

The following example assigns a string to the variable myString, and then
uses the Every Element reference form to specify every word contained in
the string.

set myString to "That's all, folks"

every word of myString

The value of the reference every word of myString is a list with
three items:

{"That's", "all", "folks"}

The following reference specifies the same list:

words of myString

The following references specify a list of all the words in the first paragraph of
a document.

tell front document of application "Scriptable Text Editor"

every word of paragraph 1

words of paragraph 1

end tell

NOTES

If you specify an Every Element reference as the container for a property or
object, the result is a list containing the specified property or object for each
object of the container. The number of items in the list is the same as the
number of objects in the container. For example, the value of the reference

length of every word

is a list such as

{ 2, 3, 6 }

The first item in the list is the length of the first word, the second item is the
length of the second word, and so on.

C H A P T E R 5

Objects and References

Reference Forms 129

Filter 5

The Filter reference form specifies all objects in a container that match one or
more conditions specified in a Boolean expression. The Filter reference form
specifies application objects only. It cannot be used to specify values. (For
information about how to use the Filter reference form, refer to the next section,
“Using the Filter Reference Form,” which begins on page 140.)

SYNTAX

referenceToObject (whose | where) Boolean

where

referenceToObject is a reference that specifies one or more objects.

Boolean is any Boolean expression.

The words whose and where have the same meaning.

EXAMPLES

The following are some examples of references that use the Filter reference
form. For examples with explanations, see the next section, “Using the Filter
Reference Form,” which begins on page 140.

every paragraph whose first word = last word

first word whose style contains italic

paragraph whose first word = last word

words whose style contains italic

every word whose size > 12 and font = "Palatino"

paragraphs where (count of characters) > 10

every word where it contains "ly"

every word where it ≠ "the"

C H A P T E R 5

Objects and References

130 Reference Forms

NOTES

Except for the Every Element reference form, the application returns an error
if no objects pass the test or tests. For the Every Element reference form, the
application returns an empty list if no objects pass the test or tests.

To specify a container after a filter, you must enclose the filter and the
reference it applies to in parentheses. For example, the parentheses around
words 1 thru 5 whose first character = "M" in the following
reference are required because the container of paragraph 5 follows
the filter.

(words 1 thru 5 whose first character = "M") of paragraph 5

ID 5

The ID reference form specifies an object by the value of its ID property. You
can use this reference form only for objects that have an ID property.

SYNTAX

className id IDvalue

where

className is the class identifier for the specified object.

IDvalue is the value of the object’s ID property.

EXAMPLES

document ID 9096

window id 777

NOTES

Although ID properties are most often integers, an ID property can belong
to any class. An application that includes ID properties must guarantee that
the IDs are unique within a container. Some applications may also provide

C H A P T E R 5

Objects and References

Reference Forms 131

additional guarantees, such as ensuring the uniqueness of an ID among
all objects.

The value of an ID property is not modifiable. It does not change even if the
object is moved within the container. This allows you to save an object’s ID and
use it to refer to the object for as long as the object exists.

Applications are not required to support ID properties. To find out if or how an
application uses ID properties, see the documentation for the application.

Index 5

The Index reference form specifies an object or a location by describing its
position with respect to the beginning or end of a container.

SYNTAX

className [index] integer

integer(st | nd | rd | th) className

(first | second | third | fourth | fifth | sixth |

 seventh | eighth | ninth | tenth) className

(last | front | back) className

where

className is the class identifier of the object being specified.

integer is an integer that describes the position of the object in relation to the
beginning of the container (if integer is a positive integer) or the end of the
container (if integer is a negative integer).

The forms first, second, and so on are equivalent to the corresponding
integer forms (for example, second word is equivalent to word 2). For
objects whose index is greater than 10, you can use the forms 12th, 23rd,
101st, etc. (Note that any integer followed by any of the suffixes listed is
valid; for example, you can use 11rd to refer to the eleventh object.)

C H A P T E R 5

Objects and References

132 Reference Forms

The front form (for example, front window) is equivalent to className 1
or first className. The last and back forms (for example, last word and
back window) refer to the last object in a container. They are equivalent to
className -1.

The following forms refer to insertion points and are used to specify locations:

beginning | front

end | back

The beginning and front forms are equivalent and refer to the first insertion
point of the container (insertion point 1). The end and back forms are
equivalent and refer to the last insertion point of the container (insertion
point -1).

EXAMPLES

The following references specify the second word from the beginning of the
third paragraph.

word 2 of paragraph 3

2nd word of paragraph 3

second word of paragraph 3

The following references specify the last word in the third paragraph.

word –1 of paragraph 3

last word of paragraph 3

The following reference specifies the next-to-last word in the third paragraph.

word –2 of paragraph 3

The following references refer to the first insertion point of the document called
Introduction.

beginning of document "Introduction"

front of document "Introduction"

C H A P T E R 5

Objects and References

Reference Forms 133

The following example contains two references. The first is a reference to the
tenth word of the document called Introduction. The second is a reference to
the last insertion point in the same document.

tell application "Scriptable Text Editor"

move word 10 of document "Introduction" to ¬
end of document "Introduction"

end tell

Middle Element 5

The Middle Element reference form specifies the middle object of a particular
class in a container.

SYNTAX

middle className

where

className is the class identifier for the specified object.

EXAMPLES

middle word of paragraph 1

middle item of {1, "doughnut", 33}

NOTES

AppleScript calculates the middle object with the expression ((n + 1) div
2), where n is the number of objects and div is the integer division operator. If
there is an even number of objects in the container, the result is rounded down.
For example, the middle word of a paragraph containing twenty words is the
tenth word.

C H A P T E R 5

Objects and References

134 Reference Forms

Name 5

The Name reference form specifies an object by name. Most applications
determine this by examining an object’s Name property.

SYNTAX

className [named] nameString

where

className is the class identifier for the specified object.

nameString is the value of the object’s Name property (see “Notes”).

EXAMPLES

document "Report"

window named "Help"

application "Macintosh HD:Applications:Scriptable Text Editor"

NOTES

In some applications, it is possible to have multiple objects of the same class
in the same container with the same name. In such cases, it is up to the
application to determine which object is specified by a Name reference.

For applications and files, the nameString parameter can be a string of the form
"Disk:Folder1:Folder2:...FileName"; for details, see “References to Files and
Applications,” which begins on page 143.

For more information about Name properties of specific types of objects, see
the definitions for object classes provided by the AppleScript documentation or
the application’s documentation.

C H A P T E R 5

Objects and References

Reference Forms 135

Property 5

The Property reference form specifies a property of an application object, a
script object, a record, or a date.

SYNTAX

propertyLabel

where

propertyLabel is the label for the property.

EXAMPLES

The following example is a reference to the Name property of the front
window. It lists the label for the property (name) and its container
(front window).

name of front window

The following example is a reference to the UnitPrice property of a record. (A
record is an AppleScript value that consists of a collection of properties. For
more information about records, see Chapter 3, “Values.”) The label of the
property is UnitPrice and the container is the record.

UnitPrice of {Product:"Super Snack", UnitPrice:0.85, Quantity:10}

NOTES

Property labels are listed in object class definitions in application dictionaries.
Because a property’s label is unique among the properties of an object, the label
is all you need to distinguish a property from all the other properties of the
object. Unlike other reference forms, there is no need to specify the class of
the object.

C H A P T E R 5

Objects and References

136 Reference Forms

Range 5

The Range reference form specifies a series of objects of the same class
in the same container. You can specify the objects with a pair of indexes
(such as words 12 thru 24) or with a pair of boundary objects (such as
words from paragraph 3 to paragraph 5).

SYNTAX

every className from boundaryReference1 to boundaryReference2

pluralClassName from boundaryReference1 to boundaryReference2

className startIndex (thru | through) stopIndex

pluralclassName startIndex (thru | through) stopIndex

where

className is a singular class ID (such as word or paragraph).

pluralclassName is the plural class identifier defined by AppleScript or an
application (such as words or paragraphs).

boundaryReference1 and boundaryReference2 are references to objects that bound
the range. The range includes the boundary objects. You can use the reserved
word beginning in place of boundaryReference1 to indicate the position before
the first object of the container. Similarly, you can use the reserved word end
in place of boundaryReference2 to indicate the position after the last object in
the container.

startIndex and stopIndex are the indexes of the first and last object of the range
(such as 1 and 10 in words 1 thru 10).

VALUE

The value of a Range reference is a list of the objects in the range. If the
specified container does not contain all of the objects specified in the range, an
error is returned. For example, the following reference results in an error.

paragraphs 1 thru 3 of {1, 2, 3}

--results in an error

C H A P T E R 5

Objects and References

Reference Forms 137

EXAMPLES

The following examples and results use the Scriptable Text Editor document
shown in Figure 5-2.

Figure 5-2 The Scriptable Text Editor document “simple”

In the following example, the phrase words from paragraph 1 to
paragraph 2 is a range reference that specifies the list of the words in
the first and second paragraphs.

tell document "simple" of application "Scriptable Text Editor"

get words from paragraph 1 to paragraph 2

end tell

--result: {"This", "is", "paragraph", "one", ¬

"This", "is", "paragraph", "two"}

In the following example, the phrase words of paragraphs 1 thru 2 is a
reference that consists of the reference words (a synonym for every word)
and the container paragraphs 1 thru 2 (a range reference).

tell document "simple" of application "Scriptable Text Editor"

get words of paragraphs 1 thru 2

end tell

--result: {{"This", "is", "paragraph", "one"}, ¬

{"This", "is", "paragraph", "two"}}

C H A P T E R 5

Objects and References

138 Reference Forms

To get the result, AppleScript first gets the value of the container, which is a list
of two paragraphs:

{"This is paragraph one.", "This is paragraph two."}

AppleScript then gets every word of the resulting list, which results in a list
of two lists:

{{"This", "is", "paragraph", "one"}, ¬

{"This", "is","paragraph", "two"}}

NOTES

If you specify a Range reference as the container for a property or object, as in

font of words 4 thru 6 of document "Mail Form"

the result is a list containing the specified property or object for each object of
the container. The number of items in the list is the same as the number of
objects in the container. For example, the value of the reference in this example
might be

{helvetica, palatino, geneva}

The first item in the list is the font of the fourth word, the second item is the
font of the fifth word, and the third item is the font of the sixth word.

To refer to a contiguous series of characters—instead of a list—when specifying
a range of text objects, use the text element. Text is an element of most text
objects, including all Scriptable Text Editor text objects. Text is also an element
of AppleScript strings.

For example, compare the values of the following references.

words 1 thru 4 of "We're all in this together"

--result: {"We're", "all", "in", "this"}

text from word 1 to word 4 of "We're all in this together"

--result: "We're all in this"

C H A P T E R 5

Objects and References

Reference Forms 139

text of words 1 thru 4 of "We're all in this together"

--result: "We're all in this"

Relative 5

The Relative reference form specifies an object or a location by describing its
position in relation to another object, known as the base, in the same container.

SYNTAX

[className] (before | [in] front of) baseReference

[className] (after | [in] back of | behind) baseReference

where

className is the class identifier of the specified object. If you leave out this
parameter, AppleScript assumes you want an insertion point.

baseReference is a reference to the base object.

The before and in front of forms, which are equivalent, refer to the object
immediately preceding the base object. The after, in back of, and
behind forms are equivalent and refer to the object immediately after the base.

EXAMPLES

The following references specify the word immediately before the first figure.

word before figure 1

word in front of figure 1

The following examples specify the insertion point immediately before the
tenth paragraph.

before paragraph 10

in front of paragraph 10

C H A P T E R 5

Objects and References

140 Using the Filter Reference Form

The following example contains three references. The first two are Index
references that specify the front document and the first word. The third
is a Relative reference that specifies the insertion point before the tenth
paragraph. The command moves the first word to the insertion point
before the tenth paragraph.

tell front document of application "Scriptable Text Editor"

move word 1 to before paragraph 10

end tell

NOTES

You can specify only a single object with the Relative form. You can use the
form to specify an object that is either before or after the base object.

If it is possible for the specified object to contain the base object (as in the
expression paragraph before word 99), the reference does not specify
the container but instead specifies the object immediately before or after the
container of the base object. For example, the expression paragraph before
word 99 specifies the paragraph immediately before the paragraph containing
the ninety-ninth word.

All applications allow you to specify a base object belonging to the same
class as the desired object (such as window in back of window "Big").
Not all allow you to specify a base of a different object class (such as word
before figure 1). The possible base classes for a particular class are up
to each application.

Using the Filter Reference Form 5

When specifying one or more objects contained in an application object, you
can use the Filter reference form to include an optional filter. A filter restricts
the objects you specify to those that match one or more conditions.

C H A P T E R 5

Objects and References

Using the Filter Reference Form 141

For example, compare this reference without a filter

every word of paragraph 5

to the same reference with a filter:

every word of paragraph 5 where character 1 = "M"

The first reference specifies all the words in the fifth paragraph. The second
reference, which includes the filter where character 1 = "M", specifies all
the words in the same container whose first character is “M”. Words that do
not pass this test are filtered out.

In effect, a filter reduces the number of objects in the container. Instead of
specifying every word of the fifth paragraph, the reference

every word of paragraph 5 whose first character = "M"

specifies every word of a smaller container, the words of the fifth paragraph
whose first characters are “M”. Similarly,

words 1 thru 5 of paragraph 5 whose first character = "M"

specifies the first five words of the same smaller container.

To determine the objects in the smaller container, the application applies the
filter to all of the objects of the specified class in the specified container—in this
case, the words in the fifth paragraph. The application uses the filter to test
each object in turn, starting with the first.

Within a filter, the predefined variable it refers to the object currently being
tested. For example, in the reference

second paragraph of document "Product Intro" ¬
where it contains "dynamo"

the word it refers to each paragraph in the document Product Intro. The
filter, contains "dynamo", is applied to each paragraph in the document,
resulting in a smaller container whose paragraphs all contain the string
"dynamo". The reference specifies the second paragraph of that smaller
container.

C H A P T E R 5

Objects and References

142 Using the Filter Reference Form

A Filter reference includes one or more tests. Each test is a Boolean expression
that compares a property or element of each object being tested, or the objects
themselves, with another object or value. Table 5-2 shows some Filter references,
the Boolean expressions they contain, and what is being tested in each reference.

Note
A test can be any Boolean expression (such as words
where 1 < 2), but only those that actually test objects
or their contents are useful for filtering objects. ◆

To include more than one test in a filter, link the tests with Boolean operators,
as in

words whose length > 10 and tenth character = "M"

The Boolean operator And indicates that each word must pass both tests to be
included in the smaller container. Another example is

words where it contains "M" or it contains "G"

The Boolean operator Or indicates that the words can pass either test to be
included in the smaller container.

Table 5-2 Boolean expressions and tests in Filter references

Filter reference Boolean expression
What is
being tested

words whose length > 10 length > 10 The length
property of
each word

words whose first character = "M" first character = "M" The first
character of
each word

words where it contains "el" it contains "el" The words
themselves

C H A P T E R 5

Objects and References

References to Files and Applications 143

Because each test is a Boolean expression, it can also include the Boolean
operator Not. For example, the reference

words whose length > 10 and not it contains "M"

refers to only those words containing more than ten characters and not
containing the letter “M.” The expression it contains "M" is a valid
Boolean expression, and applying the Boolean Not operator to it, as in

not (it contains "M")

inverts the value of the expression, so that a true value becomes false, and a
false value becomes true.

A more elegant way to apply the Boolean Not operator to the expression
it contains "M" is

it doesn't contain "M"

The expression it doesn't contain "M" is a synonym for the expression
not (it contains "M"). AppleScript supports synonyms for many of its
operators. Using a synonym doesn’t change the meaning of an expression, but
it can make the expression easier to read. Operators and synonyms are listed in
Chapter 6, “Expressions.”

References to Files and Applications 5

Several application commands and scripting addition commands allow you to
use the Name reference form to identify a file or an application as a parameter,
including applications on remote machines connected to an AppleTalk network.
AppleScript treats references to file, alias, application, machine, and zone objects
differently from other references that use the Name reference form. AppleScript
takes care of locating these objects, but uses the equivalent definitions in an
application’s dictionary (if any) to determine their characteristics.

C H A P T E R 5

Objects and References

144 References to Files and Applications

References to Files 5

You can use either of these forms to refer to any file:

file nameString

alias nameString

where

nameString is a string of the form "Disk:Folder1:Folder2:...:Filename" that
specifies exactly where the file is stored or a string that consists of the file’s
name only. Disk specifies the disk on the local computer on which the applica-
tion is stored, Folder1:Folder2:... specifies the sequence of folders that you
would have to open to find the application on the local computer, and fileName
specifies the name of the file. AppleScript doesn’t distinguish uppercase letters
from lowercase letters in filenames.

If nameString consists of the file’s name only, AppleScript attempts to locate the
file in the current directory for the application from which the script is being
run (for example, Script Editor). The current directory is the folder or volume
whose contents you can see when you choose Open or the equivalent
command from the application’s File menu. By default, the current directory
for any application is the folder or volume in which the application is stored;
but the current directory may change as you open and close files and folders
from within the application. To be sure that a command acts on the correct file,
specify the entire pathname, including the names of the volume and the entire
sequence of folders that you would have to open to find the file.

If you use a reference of the form file nameString, AppleScript doesn’t
attempt to locate the file until the script is actually run. When the script is
run, the file must be located in the specified folder (or, if only a filename was
provided, in the current directory) for AppleScript to locate it successfully.
Some commands, such as the Save command, create a file with the specified
name in the specified location if it doesn’t already exist.

To save a reference of the form file nameString in a variable, you must use the
A Reference To operator as shown in the example that follows. (To use this
script successfully, substitute a pathname that corresponds to a volume, folder
or folders, and file that actually exist on your computer.)

C H A P T E R 5

Objects and References

References to Files and Applications 145

set fileRef to a reference to file "Hard Disk:June Sales"

tell application "Scriptable Text Editor"

open fileRef

end

If you use a reference of the form alias nameString, AppleScript creates an
alias for the file—that is, a representation of the file, much like an alias icon on
the desktop, that identifies the file no matter where it is located. AppleScript
attempts to locate the file whenever you compile the script—that is, whenever
you modify the script and then attempt to check its syntax, save it, or run it.

AppleScript treats an alias like a value that can be stored in a variable and
passed around within a script. You don’t need to use the A Reference To
operator. For example, this script first saves an alias in the variable fileRef,
then uses the variable in a Tell statement that opens the file.

set fileRef to alias "Hard Disk:June Sales"

tell application "Scriptable Text Editor"

open fileRef

end

If you save this script as a script application or compiled script, move the file
June Sales to another location, then open the script again, the statement alias
"Hard Disk:June Sales" or its equivalent changes to reflect the file’s new
location, and the script still works correctly.

The difference between the forms file nameString and alias nameString is
also apparent when the file in question is located on a remote computer. If you
use the form file nameString, AppleScript doesn’t attempt to locate the file
until you actually run the script. If you use the form alias nameString,
AppleScript also attempts to locate the file whenever you compile the script,
requiring appropriate access privileges and possibly a password each time.

The actions you can perform on a specific file depend on the way the applica-
tion that created the file defines a file object. If an application provides its own
definition for a file object, AppleScript locates the file as described in this
section, but uses the definition in the application’s dictionary to determine the
characteristics of the object, such as its properties and the commands it can
handle. For the Scriptable Text Editor’s definition of a file, see page 328.

C H A P T E R 5

Objects and References

146 References to Files and Applications

References to Applications 5

You can use this form to refer to any application:

application applicationNameString ¬

[of machine computerName [of zone AppleTalkZoneName]]

where

applicationNameString is either a string of the form "Disk:Folder1:Folder2:
...:ApplicationName" that specifies where the application is stored on the
local computer or a string that consists of the name of the application. Disk
specifies the disk on the local computer on which the application is stored,
Folder1:Folder2:... specifies the sequence of folders that you would have to
open to find the application on the local computer, and ApplicationName specifies
the name of the application. If it is located on a remote computer, the application
must be running and applicationNameString must be the name of the applica-
tion as listed in the Application menu on that computer. AppleScript doesn’t
distinguish uppercase letters from lowercase letters in application names.

computerName (a string) is the Macintosh Name assigned in the Sharing
Setup control panel of the computer on which the specified application is
running. This portion of the reference is required if the application is located
on a remote computer.

AppleTalkZoneName (a string) is the name of the zone, if any, in which the
specified remote computer is located. The name must appear in the list of
AppleTalk Zones displayed in the Chooser.

After a script is compiled, a reference to an application on the local computer
identifies the application no matter where it is located on that computer.
This behavior resembles the behavior of an alias. However, a reference to
an application on a remote computer won’t compile unless the application
is running and several other conditions are met; see “References to Remote
Applications” on page 148 for details.

The actions you can perform on a specific application depend on the way
the application that created the file defines an application object. AppleScript
always locates the application as described in the sections that follow, but uses

C H A P T E R 5

Objects and References

References to Files and Applications 147

the definition in the application’s dictionary to determine the characteristics
of the object, such as its properties and the commands it can handle. For the
Scriptable Text Editor’s definition of an application, see page 318.

References to Local Applications 5

You can specify an application on the local computer with a string of the form
"Disk:Folder1:Folder2:...:ApplicationName" that specifies the application’s
exact location. If AppleScript can’t find the application in that location, it
displays a directory dialog box asking where the application is located.

You can also specify an application on the local computer with only the
application’s name ("ApplicationName"). In this case, AppleScript attempts to
find an application of that name among currently running applications. If the
application isn’t running, AppleScript attempts to locate it in the current
directory. If the application isn’t in the current directory, AppleScript displays a
directory dialog box asking where the application is located. If the name of the
application you select is different from the name specified in the script, the
name in the script changes to match the name of the application you select.

When you run a script on the same computer on which it was compiled (that is,
on which it was last run or saved, or had its syntax checked), AppleScript finds
the application you specified in the original script even if you have moved it or
changed its name. If the application has been removed, AppleScript searches
for another version of the same application.

As with aliases, it is often convenient to store a reference to an application in
a variable:

set x to application "Scriptable Text Editor"

x

tell x to quit

If you save this script as a script application or compiled script, move the
Scriptable Text Editor application to another location, change its name,
then open the script again, the name "Scriptable Text Editor" in
the script changes to reflect the application’s new name, and the script still
works correctly.

C H A P T E R 5

Objects and References

148 References to Files and Applications

References to Remote Applications 5

If the application is on a remote computer, you must specify its name as it
would be listed in the Application menu, the name of the computer, and if
necessary the name of the zone in which the computer is located:

quit application "Scriptable Text Editor" ¬
of machine "Mr.Science" of zone "Far Side"

The specified remote application must be running. AppleScript doesn’t open
applications on remote computers. In addition, the computer that contains the
application and the computer on which the script is run must be connected to
an AppleTalk network, program linking (set with the Sharing Setup control
panel) must be enabled, access for the user (set with the Users & Groups
control panel) must be provided, and the application must allow remote
program linking (set by selecting the application, choosing Sharing from the
File menu, and selecting the checkbox labeled “Allow remote program
linking”). For information about these menus and control panels, see the user’s
guide for your Macintosh computer.

This script sends several commands to an application on a remote computer:

tell application "Scriptable Text Editor" of ¬
machine "Pegi's Mac" of zone "Publications"

open file "HD:Reports:Status Report"

set pegisReport to text from paragraph 1 to ¬
paragraph 4 of document "Status Report"

close document "Status Report"

end tell

tell application "Scriptable Text Editor"

open file "Department Status"

copy pegisReport to end of document "Department Status"

tell app "Scriptable Text Editor" to quit

Results of Expressions 149

C H A P T E R 6

Expressions 6Figure 6-0
Listing 6-0
Table 6-0

An expression is any series of AppleScript words that has a value. You use
expressions to represent or derive values in scripts. When AppleScript
encounters an expression, it converts it into an equivalent value. This is
known as evaluation.

Chapter 3 describes and gives examples of the simplest kinds of expressions,
called literal expressions, which are representations of values in scripts. This
chapter begins by describing how to evaluate expressions. It then describes five
additional types of expressions:

■ variables and script properties, which are named containers for values

■ the AppleScript property Text Item Delimiters, which determines the text
item delimiters used by AppleScript in all scripts

■ reference expressions, which are expressions that derive the value of
an object

■ operations, which are expressions that derive values from other values

Results of Expressions 6

The result of any expression is its value.You can use the Script Editor to
display the result of an expression by typing an expression on a line by
itself and running the script. AppleScript returns the value of the expression.
Here’s an example:

1. Open the Script Editor if it is not already open.

2. Type the following expression in the editor subwindow:

3 + 4

C H A P T E R 6

Expressions

150 Variables

3. Click the Run button in the Script Editor window.
This causes AppleScript to evaluate the expression.

4. Choose Show Result from the Controls menu.
The result window displays the result of the evaluation, 7.

Variables 6

A variable is a named container in which to store a value. When AppleScript
encounters a variable in a statement, it evaluates the variable by getting its
value. Variables are contained in a script, not in an application, and their values
are normally lost when you close the script that contains them. If you need to
keep track of variable values that are persistent even after you close a script or
shut down your computer, use properties instead of variables. See “Script
Properties,” which begins on page 156, for more information.

Unlike variables in many other programming languages, AppleScript variables
can hold values of any class. For example, you can use the following sequence
of assignment statements to set x to a string value, an integer value, and finally
a Boolean value:

set x to "Title"

set x to 12

set x to True

The name of a variable is a series of characters, called an identifier, that you
specify when you create the variable.

Creating Variables 6

To create a variable in AppleScript, assign it a value. There are two commands
for doing this:

■ Set

■ Copy

C H A P T E R 6

Expressions

Variables 151

With the Set command, list the variable name first, followed by the value you
want to assign:

set myName to "Pegi"

With the Copy command, list the value first, followed by the variable name:

copy "Pegi" to myName

Statements like these that assign values to variables are called assignment
statements.

The variable name is a series of characters called an identifier. AppleScript
identifiers are not case sensitive—for example, the variables myname, myName,
and MYNAME all represent the same value. The rules for specifying identifiers
are listed in “Identifiers” on page 27.

You can list an expression in place of a value in an assignment statement.
AppleScript evaluates the expression and assigns the resulting value to the
variable. For example, the following statement creates a variable called
myNumber whose value is the integer 17.

set myNumber to 5 + 12

You can also assign a reference as the value of a variable. In this case,
AppleScript gets the value of the object specified in the reference and assigns
it to the variable. For example, the following statement gets the value of
the first word of the document called Report—a string—and stores it in a
variable called myWord.

set myWord to word 1 of document "Report" of application ¬
"Scriptable Text Editor"

You can do the same thing with the Copy command:

copy word 1 of document "Report" of application ¬
"Scriptable Text Editor" to myWord

C H A P T E R 6

Expressions

152 Variables

The results of the two types of assignment statements are the same in all
cases except when the value being assigned is a list, record, or script object.
The Copy command makes a new copy of the list, record, or script object,
and the Set command creates a variable that shares data with the original list,
record, or script object. For more information, refer to “Data Sharing” on
page 154.

Using Variables 6

To use the value of a variable in a script, include the variable in a command or
expression. For example, the first statement in the following example creates a
variable, called myName, whose value is the string "Mitch". The second
statement uses the variable myName in place of a string as the default
answer parameter of the Display Dialog command.

set myName to "Mitch"

display dialog "What is your name?" default answer myName

If you assign a new value to a variable, it replaces the old value. The following
script shows what happens when you assign a new value. It uses the Display
Dialog command to display the values. Try running this script:

set myName to "Mitch"

display dialog ("The value of myName is now " & myName) ¬

buttons "Sure Is" default button 1

set myName to "Warren"

display dialog ("The value of myName is now " & myName) ¬

buttons "You Betcha" default button 1

The first Display Dialog command displays the value stored by the first
assignment statement (the string "Mitch"). The next Display Dialog
command displays the value after the second assignment statement (the
string "Warren").

C H A P T E R 6

Expressions

Variables 153

The “A Reference To” Operator 6

To create a variable whose value is a reference instead of the value of the object
specified by a reference, use the A Reference To operator. Here’s an example:

set myDoc to a reference to document "Report" ¬
of application "Scriptable Text Editor"

The value of the variable myDoc is the reference

document "Report" of application "Scriptable Text Editor"

After you create a variable whose value is a reference, you can use it in a script
anywhere a reference is required. When AppleScript executes the statement
containing the variable, it replaces the variable with the reference. For example,
when AppleScript executes the statement

tell myDoc

get word 1

end tell

it replaces the variable myDoc with the reference document "Report" of
application "Scriptable Text Editor".

The syntax for using the A Reference To operator is

[a] (ref [to] | reference to) reference

where reference is a reference to an object. As indicated in the syntax description,
there are many ways to shorten expressions containing A Reference To. For
example, all of these expressions are equivalent:

set myDoc to a reference to document "Report" of ¬
application "Scriptable Text Editor"

set myDoc to reference to document "Report" of ¬
application "Scriptable Text Editor"

set myDoc to a ref to document "Report" of application ¬
"Scriptable Text Editor"

C H A P T E R 6

Expressions

154 Variables

set myDoc to ref to document "Report" of application ¬
"Scriptable Text Editor"

set myDoc to ref document "Report" of application ¬
"Scriptable Text Editor"

After you create a reference with the A Reference To operator, you can use the
Contents property to get the value of the object that it refers to. The Contents
property is the value of the object specified by a reference. For example, the
result of the following expression is a string containing the text of document
Report of the Scriptable Text Editor.

contents of myDoc

Data Sharing 6

Data sharing allows you to create two or more variables that share the same
list, record, or script object data; it can be used to promote efficiency when
working with large data structures. Only data in lists, records, and script
objects can be shared; you cannot share other values. In addition, the shared
structures must all be on the same computer.

To create a variable that shares data with another variable whose value is a list,
record, or script object, use the Set command. For example, the second Set
command in the following example creates the variable yourList, which
shares data with the previously defined variable myList.

set myList to { 1, 2, 3 }

set yourList to myList --this command creates yourList,

--which shares data with myList

set item 1 of myList to 4

get yourList --result:{ 4, 2, 3}

If you update myList by setting the value of its first item to 4, then the value
of both myList and yourList is {4, 2, 3}. Rather than having multiple
copies of shared data, the same data belongs to multiple structures. When one
structure is updated, the other is automatically updated.

C H A P T E R 6

Expressions

Variables 155

To avoid data sharing for lists, records, and script objects, use the Copy
command instead of the Set command. The Copy command makes a
copy of the list, record, or script object. Changing the value of the original
changes does not change the value of the variable. Here’s an example of
using Copy instead of Set to create the variable yourList.

set myList to { 1, 2, 3 }

copy myList to yourList --this command makes a copy of

--mylist

set item 1 of myList to 4

get yourList --result: { 1, 2, 3 }

If you update myList, the value of yourList is still {1, 2, 3}.

Scope of Variables 6

The scope of a variable determines where else in a script you may refer to the
same variable. The scope of a variable in turn depends on where you declare it
and whether you declare it as global or local.

After you define a global variable in a script, you can make subsequent
references to the same variable either at the top level of the script or in any
of the script’s subroutines. After you define a local variable, you can make
subsequent references to the same variable only at the same level of the script
at which you defined the variable.

AppleScript assumes that all variables defined at the top level of a script or
within its subroutines are local unless you explicitly declare them as global. For
more detailed information and examples of the use of variables in subroutines,
see “Recursive Subroutines,” which begins on page 225.

You can also declare variables within script objects. The scope of variables in a
script object is limited to that script object. For more information, see “Scope of
Script Variables and Properties,” which begins on page 252.

C H A P T E R 6

Expressions

156 Script Properties

Predefined Variables 6

Predefined variables are variables whose values are supplied by AppleScript.
You can use them in scripts without setting their values. Predefined variables
are global—that is, you can use them anywhere in a script.

For a summary of the predefined variables in the AppleScript English language
dialect, refer to Appendix A, “The Language at a Glance.”

Note
Although AppleScript does not prevent you from setting
the values of predefined variables, you should treat
predefined variables as constants—that is, you should
never change their values. ◆

Script Properties 6

Script properties are labeled containers for values that you can use in much the
same way you use variables. The value of a script property persists until you
recompile the script that contains it, and you can easily set the property’s initial
value without resetting it each time the script is run. You can accomplish the
same thing with a global variable, but it is usually more convenient to use a
property for this purpose.

This section describes how to define script properties.

Note
The description of script properties in this section assumes
that you are using the Script Editor application supplied
with AppleScript. Other script editors might not support
persistence of script properties. If you are using a different
script editor, check its documentation to see how it handles
script properties. ◆

C H A P T E R 6

Expressions

Script Properties 157

Defining Script Properties 6

The syntax for defining a script property is

(prop | property) propertyLabel : initialValue

where

propertyLabel is an identifier. The rules for specifying identifiers are listed in
“Identifiers” on page 27.

initialValue is the value that is assigned to the property when you first run the
script that contains the property or when you save it or check its syntax.

After you define a script property, you change its value the same way you
change variable values: with the Set or Copy command. You can get a script
property value using the Get command or by using it in an expression.

Using Script Properties 6

To see how script properties work, try running the following script, which
contains a script property called theCount.

property theCount : 0

set theCount to theCount+1

display dialog "The value of theCount is: " & theCount ¬
as string

The first time you run the script, the value of theCount is set to 0. The Set
command adds one to theCount, and the Display Dialog command displays
the value of theCount, which is 1.

Now run the script again. The Set command adds 1 to the value of theCount
(which is still one because it has not been reset), and the Display Dialog
command reports a value of 2. If you run the script a third time, the value of
theCount is 3, and so on.

Now save the script as a compiled script. Close the script, and then open and
run it without making any changes. The value of theCount is one more than it
was before you closed the script.

C H A P T E R 6

Expressions

158 AppleScript Properties

Finally, recompile the script. (You can do this by making an insignificant
change, such as adding a space at the end of a line, and clicking the Check
Syntax button.) The value of theCount is set to the initial value in the
property definition. The Display Dialog command reports a value of 1.

Scope of Script Properties 6

Like the scope of a variable, the scope of a script property determines where
else in a script you may refer to the same property ID. The scope of a property
in turn depends on where you declare it.

You can declare a property at the top level of a script or at the top level of a
script object. If you declare it at the top level of a script, a property identifier is
visible throughout the script. If you declare it at the top level of a script object,
a property identifier is visible only within that script object. After declaring a
property, you can use the same identifier as a separate variable only if you first
declare it as a local variable.

For detailed information and examples of the use of properties in subroutines,
see “Scope of Script Variables and Properties,” which begins on page 252.

AppleScript Properties 0

You can use the global variable AppleScript to get properties of AppleScript
itself rather than properties of the current target. You can refer to this global
variable from any part of any script. Currently, the Text Item Delimiters
property is the only AppleScript property available.

Text Item Delimiters 6

The Text Item Delimiters property consists of a list of strings used as delimiters
by AppleScript when it coerces lists to strings or gets text items from strings.

You can get and set the current value of AppleScript’s Text Item Delimiters.
Normally, AppleScript doesn’t use any delimiters. For example, the script

{"bread", "milk", "butter", 10.45} as string

C H A P T E R 6

Expressions

AppleScript Properties 159

returns this result if AppleScript’s text delimiters have not been
explicitly changed:

"breadmilkbutter10.45"

For printing or display purposes, it is usually preferable to set the text
delimiters to something that’s easier to read. For example, the script

set AppleScript's text item delimiters to {", "}

{"bread", "milk", "butter", 10.45} as string

returns this result:

"bread, milk, butter, 10.45"

The Text Item Delimiters property also allows you to extract individual names
from a pathname. For example, the script

set AppleScript's text item delimiters to {":"}

get last text item of "Hard Disk:CD Contents:Release Notes"

returns the result "Release Notes".

Once you change the Text Items Delimiters property, it remains set until you
restart your computer. Currently, AppleScript uses only the first delimiter in
the list.

You may want to use an error handler to reset the Text Item Delimiters
property to its former value if an error occurs:

set savedTextItemDelimiters to AppleScript's text item¬

 delimiters

try

set AppleScript's text item delimiters to {"**"}

--rest of script...

--finally, reset the text item delimiters:

set AppleScript's text item delimiters to¬

savedTextItemDelimiters

C H A P T E R 6

Expressions

160 Reference Expressions

on error m number n from f to t partial result p

--also reset text item delimiters in case of an error:

set AppleScript's text item delimiters to ¬

savedTextItemDelimiters

--and resignal the error:

error m number n from f to t partial result p

end try

Reference Expressions 6

References are compound names that refer to objects in applications, the
system, or AppleScript. Because each object has a value, a reference can be
used to represent a value in a script. A reference expression is a reference
that AppleScript interprets as a value.

A reference can function as a reference to an object or as a reference expression.
When a reference is the direct parameter of a command, it usually functions as
a reference to an object, indicating to which object the command should be
sent. In most other cases, references function as expressions, which AppleScript
evaluates by getting their values.

For example, the reference in the following example is a reference to an object.
It identifies the object to which the Copy command is sent.

copy word 1 of front document of application "Scriptable Text Editor"

On the other hand, the reference in the following example is a reference
expression:

repeat (word 1 of front document of application ¬
"Scriptable Text Editor") times

display dialog "Hello"

end repeat

C H A P T E R 6

Expressions

Operations 161

When AppleScript executes the statement, it gets the value of the reference
word 1 of front document of application "Scriptable Text
Editor"—a string—and then coerces it to an integer, if possible. (For
information about the Repeat statement, refer to Chapter 7, “Control
Statements.” For information about coercions, refer to “Coercing Values”
on page 68.)

Operations 6

Operations are expressions that use operators to derive values from other
values. AppleScript includes operators for performing arithmetic operations,
comparing values, performing Boolean evaluations, and coercing values.

The values from which operators derive values are called operands. Each
operator can handle operands of specific classes, which are defined in the
definition of the operator. For example, the operands for the addition (+)
operator must belong to the class Integer or Real, while the operand for the
Not operator must belong to class Boolean. Certain operators work with
operands from a variety of classes. For example, you can use the concatenation
operator (&) to join two strings, two lists, or two records.

The result of each operation is a value of a particular class. For many operators,
such as the equality operator (=) and the greater than operator (>), the class of
the result is always the same—in these cases, Boolean. For other operators,
such as the concatenation operator (&), the class of the result depends on the
class of the operands. For example, the result of concatenating two strings is a
string, but the result of concatenating two integers is a list of integers.

If you use an operator with operands of the wrong classes, AppleScript
attempts to coerce the operands to the correct class, if possible. For example,
the concatenation operator (&) works with strings, lists, or records. When
AppleScript evaluates the following expression, it coerces the integer 66 to a
string before concatenating it with the string "Route".

"Route " & 66

--result: "Route 66"

C H A P T E R 6

Expressions

162 Operations

When evaluating expressions containing operators, AppleScript checks the
leftmost operand first. If the operand does not belong to one of the legal classes
for the operator, AppleScript coerces it if possible. After coercing the leftmost
operand or verifying that it belongs to a legal class, AppleScript checks the
rightmost operand and coerces it (if necessary and possible) to be compatible
with the leftmost operand. The exceptions to this rule are expressions with the
Is Contained By, Equal, and Is Not Equal operators. AppleScript checks the
rightmost operand first in expressions with the Is Contained By operator.
AppleScript never coerces operands of the Equal and Is Not Equal operators.

If AppleScript cannot coerce the operands, it returns an error. For example, the
addition operator (+) works with numbers (integers and real numbers) only. If
you attempt to evaluate an expression such as 3 + "cat", you’ll get an error,
because AppleScript cannot coerce "cat" to a number.

Operations can be performed either by AppleScript or by an application. The
rule is that if the leftmost operand is a value, AppleScript performs the
operation, and if the leftmost operand is a reference to an application object,
the application performs the operation. For example, the comparison

"Hello" contains word 1 of document "Report"

is performed by AppleScript, because the first operand is a string. Before
performing the comparison, AppleScript must get the value of the first
word. In contrast, the comparison

word 1 of document "Report" contains "Hello"

is performed by the application containing the document named Report.

The Is Contained By operator is an exception to this rule. In expressions with
the Is Contained By operator, AppleScript performs the operation if the
rightmost operand is a value and the application performs the operation if the
rightmost operand is a reference to an application object.

Table 6-1 summarizes the AppleScript operators. For each operator, it includes a
brief description of the operation and lists the class (or classes) of the operands
and the class (or classes) of the result. A few of the operators are characters that
you type with modifier keys. For these operators, the keystrokes are shown in
parentheses. The section following the table provides more information about
how operators treat different classes of operands.

The sections following the table contain more detailed explanations and
examples of operations.

C H A P T E R 6

Expressions

Operations 163

Table 6-1 AppleScript operators

Operator Description

and And. Binary logical operator that results in true if both
the operand to its left and the operand to its right are
true. Both of the operands must evaluate to Boolean
values. When evaluating expressions containing the And
operator, AppleScript checks the leftmost operand first.
If its value is false, AppleScript does not evaluate
the rightmost operand, because it already knows the
expression is false. (This behavior is sometimes called
short-circuiting.)
Class of operands: Boolean
Class of result: Boolean

or Or. Binary logical operator that results in true if either
the operand to its left or the operand to its right is true.
At least one of the operands must evaluate to a Boolean
value. When evaluating expressions containing the Or
operator, AppleScript checks the leftmost operand first.
If its value is true, AppleScript does not evaluate the
rightmost operand, because it already knows the
expression is true. (This behavior is sometimes called
short-circuiting.)
Class of operands: Boolean
Class of result: Boolean

& Concatenation. Binary operator that joins two values. If
the operand to the left of the operator is a string, the
result is a string. If the operand to the left of the operator
is a record, the result is a record. If the operand to the left
of the operator belongs to any other class, the result is
a list.
Class of operands: Boolean, Class Identifier, Constant,
Data, Date, Integer, List, Real, Record, Reference, String
Class of result: List, Record, String

=
is
equal
equals
[is] equal to

Equal. Binary comparison operator that results in true if
the operand to its left and the operand to its right have
the same value. The operands can be of any class. The
method AppleScript uses to determine equality depends
on the class of the operands.
Class of operands: Boolean, Class Identifier, Constant,
Data, Date, Integer, List, Real, Record, Reference, String
Class of result: Boolean

continued

C H A P T E R 6

Expressions

164 Operations

≠ (Option–equal sign)
is not
isn't
isn't equal [to]
is not equal [to]
doesn't equal
does not equal

Not equal. Binary comparison operator that results in
true if the operand to its left and the operand to its right
have different values. The operands can be of any class.
The method AppleScript uses to determine equality
depends on the class of the operands.
Class of operands: Boolean, Class Identifier, Constant,
Data, Date, Integer, List, Real, Record, Reference, String
Class of result: Boolean

>
[is] greater than
comes after
is not less than or equal [to]
isn't less than or equal [to]

Greater than. Binary comparison operator that results in
true if the value of the operand to its left is greater than
the value of the operand to its right. Both operands must
evaluate to values of the same class. If they don’t,
AppleScript attempts to coerce the operand to the right
of the operator to the class of the operand to the left. The
method AppleScript uses to determine which value is
greater depends on the class of the operands.
Class of operands: Date, Integer, Real, String
Class of result: Boolean

<
[is] less than
comes before
is not greater than or equal
[to]
isn't greater than or equal
[to]

Less than. Binary comparison operator that results in
true if the value of the operand to its left is less than
the value of the operand to its right. Both operands
must evaluate to values of the same class. If they don’t,
AppleScript attempts to coerce the operand to the right
of the operator to the class of the operand to the left.
The method AppleScript uses to determine which value
is greater depends on the class of the operands.
Class of operands: Date, Integer, Real, String
Class of result: Boolean

≥ (Option–greater-than sign)
>=
[is] greater than or equal [to]
is not less than
isn't less than
does not come before
doesn't come before

Greater than or equal to. Binary comparison operator
that results in true if the value of the operand to its left
is greater than or equal to the value of the operand to its
right. Both operands must evaluate to values of the same
class. If they don’t, AppleScript attempts to coerce the
operand to the right of the operator to the class of
the operand to the left. The method AppleScript uses to
determine which value is greater depends on the class
of the operands.
Class of operands: Date, Integer, Real, String
Class of result: Boolean

continued

Table 6-1 AppleScript operators (continued)

Operator Description

C H A P T E R 6

Expressions

Operations 165

≤ (Option–less-than sign)
<=
[is] less than or equal [to]
is not greater than
isn't greater than
does not come after
doesn't come after

Less than or equal to. Binary comparison operator that
results in true if the value of the operand to its left is
less than or equal to the value of the operand to its right.
Both operands must evaluate to values of the same class.
If they don’t, AppleScript attempts to coerce the operand
to the right of the operator to the class of the operand to
the left. The method AppleScript uses to determine
which value is greater depends on the class of the
operands.
Class of operands: Date, Integer, Real, String
Class of result: Boolean

start[s] with
begin[s] with

Starts with. Binary containment operator that results
in true if the list or string to its right matches the
beginning of the list or string to its left. Both operands
must evaluate to values of the same class. If they don’t,
AppleScript attempts to coerce the operand to the right
of the operator to the class of the operand to the left.
Class of operands: List, String
Class of result: Boolean

end[s] with Ends with. Binary containment operator that results in
true if the list or string to its right matches the end of
the list or string to its left. Both operands must evaluate
to values of the same class. If they don’t, AppleScript
attempts to coerce the operand to the right of the
operator to the class of the operand to the left.
Class of operands: List, String
Class of result: Boolean

contain[s] Contains. Binary containment operator that results in
true if the list, record, or string to its right matches any
part of the list, record, or string to its left. Both operands
must evaluate to values of the same class. If they don’t,
AppleScript attempts to coerce the operand to the right
of the operator to the class of the operand to the left.
Class of operands: List, Record, String
Class of result: Boolean

continued

Table 6-1 AppleScript operators (continued)

Operator Description

C H A P T E R 6

Expressions

166 Operations

does not contain
doesn't contain

Does not contain. Binary containment operator that
results in true if the list, record, or string to its right
does not match any part of the list, record, or string to its
left. Both operands must evaluate to values of the same
class. If they don’t, AppleScript attempts to coerce the
operand to the right of the operator to the class of the
operand to the left.
Class of operands: List, Record, String
Class of result: Boolean

is in
is contained by

Is contained by. Binary containment operator that results
in true if the list, record, or string to its left matches
any part of the list, record, or string to its right. Both
operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the operand
to the left of the operator to the class of the operand to
the right.
Class of operands: List, Record, String
Class of result: Boolean

is not in
is not contained by
isn't contained by

Is not contained by. Binary containment operator that
results in true if the list, record, or string to its left does
not match any part of the list, record, or string to its
right. Both operands must evaluate to values of the same
class. If they don’t, AppleScript attempts to coerce the
operand to the left of the operator to the class of the
operand to the right.
Class of operands: List, Record, String
Class of result: Boolean

* Multiply. Binary arithmetic operator that multiplies the
number to its left and the number to its right.
Class of operands: Integer, Real
Class of result: Integer, Real

+ Plus. Binary arithmetic operator that adds the number or
date to its left and the number or date to its right. Only
integers can be added to dates. AppleScript interprets
such an integer as a number of seconds.
Class of operands: Date, Integer, Real
Class of result: Date, Integer, Real

continued

Table 6-1 AppleScript operators (continued)

Operator Description

C H A P T E R 6

Expressions

Operations 167

- Minus. Binary or unary arithmetic operator. The binary
operator subtracts the number to its right from the
number or date to its left. The unary operator makes
the number to its right negative. Only integers can be
subtracted from dates. AppleScript interprets such an
integer as a number of seconds.
Class of operands: Date, Integer, Real
Class of result: Date, Integer, Real

÷ (Option-slash)
/

Division. Binary arithmetic operator that divides the
number to its left by the number to its right.
Class of operands: Integer, Real
Class of result: Real

div Integral division. Binary arithmetic operator that divides
the number to its left by the number to its right and
returns the integral part of the answer as its result.
Class of operands: Integer, Real
Class of result: Integer

mod Remainder. Binary arithmetic operator that divides the
number to its left by the number to its right and returns
the remainder as its result.
Class of operands: Integer, Real
Class of result: Integer, Real

^ Exponent. Binary arithmetic operator that raises the
number to its left to the power of the number to its right.
Class of operands: Integer, Real
Class of result: Real

as Coercion. Binary operator that converts the operand to
its left to the class listed to its right. Not all values can
be coerced to all classes. The coercions that AppleScript
can perform are listed in “Coercing Values” on page 68.
The additional coercions, if any, that applications can
perform are listed in application dictionaries.
Class of operands: the operand to the right of the operator
must be a class identifier; the operand to the left must be
a value that can be converted to that class
Class of result: the class specified by the class identifier to
the right of the operator

continued

Table 6-1 AppleScript operators (continued)

Operator Description

C H A P T E R 6

Expressions

168 Operations

Operators That Handle Operands of Various Classes 6

Many of the operators can handle operands of a variety of classes. The
following sections describe how the Equal, Is Not Equal To, Greater Than,
Less Than, Starts With, Ends With, Contains, Is Contained By, and
concatenation (&) operators behave with different classes of operands.

Equal, Is Not Equal To 6

The Equal and Is Not Equal To operators can handle operands of any class.

OPERANDS OF DIFFERENT CLASSES

Two expressions of different classes are not equal.

BOOLEAN EXPRESSION

Two Boolean expressions are equal if both of them evaluate to true or if
both evaluate to false. They are not equal if one evaluates to true and the
other to false.

not Not. Unary logical operator that results in true if the
operand to its right is false, and false if the operand
to its right is true.
Class of operand: Boolean
Class of result: Boolean

[a] (ref [to] | reference to) A Reference To. Unary operator that causes AppleScript
to interpret the value to its right as a reference instead of
getting its value. For more information about the A
Reference To operator, see “The ‘A Reference To’
Operator” on page 153.
Class of operand: Reference
Class of result: Reference

Table 6-1 AppleScript operators (continued)

Operator Description

C H A P T E R 6

Expressions

Operations 169

CLASS IDENTIFIER

Two class identifiers are equal if they are the same identifier. They are not equal
if they are different identifiers.

CONSTANT

Two constants are equal if they are the same. They are not equal if they
are different.

DATA

Two data values are equal if they are the same length in bytes and their bytes
are the same (AppleScript does a byte-wise comparison).

DATE

Two dates are equal if they both represent the same date, even if they are
expressed in different formats. For example, the following expression is true,
because date "12/5/92" and date "December 5th, 1992" represent
the same date.

date "12/5/92" = date "December 5th, 1992"

INTEGER

Two integers are equal if they are the same. They are not equal if they
are different.

LIST

Two lists are equal if each item in the list to the left of the operator is equal to
the item in the same position in the list to the right of the operator. They are not
equal if items in the same positions in the lists are not equal or if the lists have
different numbers of items. For example,

{ (1 + 1), (4 > 3) } = {2, true}

is true, because (1 + 1) evaluates to 2, and (4 > 3) evaluates to true.

C H A P T E R 6

Expressions

170 Operations

REAL

Two real numbers are equal if they both represent the same real number, even
if the formats in which they are expressed are different. For example, the
following expression is true.

0.01 is equal to 1e10-2

Two real numbers are not equal if they represent different real numbers.

RECORDS

Two records are equal if they both contain the same collection of properties and
if the values of properties with the same labels are equal. They are not equal if
the records contain different collections of properties, or if the values of
properties with the same labels are not equal. The order in which properties are
listed does not affect equality. For example, the following expression is true.

{ name:"Eric", mileage:"8000" } = { mileage:"8000",¬
name:"Eric"}

REFERENCE

Two references are equal if their classes, reference forms, and containers are
identical. They are not equal if their classes, reference forms, and containers are
not identical, even if they refer to the same object.

For example, the expression x = y in the following Tell statement is true,
because the classes (word), reference forms (Index), and containers
(paragraph 1 of document "Intro" of application
"Scriptable Text Editor") of the two references are identical.

tell document "Intro" of application ¬
"Scriptable Text Editor"

set x to a reference to word 1 of paragraph 1

set y to a reference to word 1 of paragraph 1

x = y

end tell

--result:true

C H A P T E R 6

Expressions

Operations 171

The expression x = y in the following statement is false, because the
containers are different.

tell document "Intro" of application ¬
"Scriptable Text Editor"

set x to a reference to word 1 of paragraph 1

set y to a reference to word 1

x = y

end tell

--result:false

When you use references in expressions without the A Reference To operator,
the values of the objects specified in the references are used to evaluate the
expressions. For example, the result of the following expression is true if both
documents begin with the same word.

word 1 of document "Report" = word 1 document "Intro"

STRING

Two strings are equal if they are both the same series of characters. They are
not equal if they are different series of characters. AppleScript compares strings
character by character. It does not distinguish uppercase from lowercase letters
unless you use a Considering statement to consider the case attribute. For
example, the following expression is true.

"DUMPtruck" is equal to "dumptruck"

AppleScript considers all characters and punctuation, including spaces, tabs,
return characters, diacritical marks, hyphens, periods, commas, question
marks, semicolons, colons, exclamation points, backslash characters, and single
and double quotation marks in string comparisons. AppleScript ignores style in
string comparisons.

C H A P T E R 6

Expressions

172 Operations

Note
All string comparisons can be affected by Considering and
Ignoring statements, which allow you to selectively consider
or ignore the case of characters, as well as specific types of
characters. For more information, see “Considering and
Ignoring Statements” on page 213. ◆

Greater Than, Less Than 6

The Greater Than and Less Than operators work with dates, integers, real
numbers, and strings.

DATE

A date is greater than another date if it represents a later time. A date is less
than another date if it represents an earlier time.

INTEGER

An integer is greater than a real number or another integer if it represents a
larger number. An integer is less than a real number or another integer if it
represents a smaller number.

REAL

A real number is greater than an integer or another real number if it represents
a larger number. A real number is less than an integer or another real number if
it represents a smaller number.

STRING

 A string is greater than (comes after) another string if it would appear after the
other string in an English-language dictionary. For example,

"zebra" comes after "aardvark"

and

C H A P T E R 6

Expressions

Operations 173

"zebra" > "aardvark"

are true. A string is less than (comes before) another string if it would appear
in a dictionary before the other string. For example,

"aardvark" comes before "zebra"

and

"aardvark" < "zebra"

are true.

AppleScript uses the ASCII collating sequence to determine a word’s position
in an English-language dictionary. The order of the ASCII collating sequence is

space!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTU
VWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

AppleScript compares strings character by character. When the corresponding
characters in two strings are not the same, the string containing the character
closest to the beginning of the ASCII collating sequence is less than the other
string. If two strings have identical characters but one is shorter than the other,
the shorter string is less than the longer string. AppleScript treats all letters as
lowercase letters, unless you use a Considering statement to consider the case
attribute. For more information about Considering statements, refer to
“Considering and Ignoring Statements” on page 213.

Starts With, Ends With 6

The Starts With and Ends With operators work with lists and strings.

LIST

A list starts with another list if the values of the items in the list to the right of
the operator are equal to the values of the items at the beginning of the list to
the left. A list ends with another list if the values of the items in the list to the
right of the operator are equal to the values of the items at the end of the list to

C H A P T E R 6

Expressions

174 Operations

the left. In both cases, the items in the two lists must be in the same order. Both
Starts With and Ends With work if the operand to the right of the operator is a
single value. For example,

{ "this", "is", 2, "cool" } ends with "cool"

and

{ "this", "is", 2, "cool" } starts with "this"

and

{ "this", "is", 2, "cool" } starts with { "this", "is" }

are all true.

STRING

A string starts with another string if the characters in the string to the right of
the operator are the same as the characters at the beginning of the string to the
left. For example,

"operand" starts with "opera"

is true.

A string ends with another string if the characters in the string to the right of
the operator are the same as the characters at the end of the string to the left.
For example,

"operand" ends with "and"

is true.

AppleScript compares strings character by character according to the rules for
the Equal operator.

C H A P T E R 6

Expressions

Operations 175

Contains, Is Contained By 6

The Contains and Is Contained By operators work with lists, records,
and strings.

LIST

A list contains another list if the list to the right of the operator is a sublist
of the list to the left of the operator. A sublist is a list whose items appear in
the same order and have the same values as any series of items in the other list.
For example,

{ "this", "is", 1 + 1, "cool" } contains { "is", 2 }

is true, but

{ "this", "is", 2, "cool" } contains { 2, "is" }

is false.

A list is contained by another list if the list to the left of the operator is a sublist
of the list to the right of the operator. For example,

{ "is", 2} is contained by { "this", "is", 2, "cool" }

is true. Both Contains and Is Contained By work if the sublist is a single
value. For example,

{ "this", "is", 2, "cool" } contains 2

and

2 is contained by { "this", "is", 2, "cool" }

are true.

C H A P T E R 6

Expressions

176 Operations

RECORD

A record contains another record if all the properties in the record to the
right of the operator are included in the record to the left, and the values
of properties in the record to the right are equal to the values of the correspon-
ding properties in the record to the left. A record is contained by another record
if all the properties in the record to the left of the operator are included in the
record to the right, and the values of the properties in the record to the left
are equal to the values of the corresponding properties in the record to the
right. The order in which the properties appear does not matter. For example,

{ name:"Eric", mileage:"8000", description:"fast"} ¬
contains { description:"fast", name:"Eric" }

is true.

STRING

A string contains another string if the characters in the string to the right of the
operator are equal to any contiguous series of characters in the string to the left
of the operator. For example,

"operand" contains "era"

is true, but

"operand" contains "dna"

is false.

A string is contained by another string if the characters in the string to the left
of the operator are equal to any series of characters in the string to the right of
the operator. For example, this statement is true:

"era" is contained by "operand"

C H A P T E R 6

Expressions

Operations 177

Concatenation 6

The concatenation operator (&) can handle operands of any class.

STRING

The concatenation of two strings is a string that begins with the characters in
the string to the left of the operator, followed immediately by the characters
in the string to the right of the operator. AppleScript does not add spaces or
other characters between the two strings. For example,

"dump" & "truck"

returns the string "dumptruck".

If the operand to the left of the operator is a string, but the operand to the right
is not, AppleScript attempts to coerce the operand to the right to a string. For
example, when AppleScript evaluates the expression

"Route " & 66

it coerces the integer 66 to the string "66", and the result is

"Route 66"

RECORD

The concatenation of two records is a record that begins with the properties
of the record to the left of the operator, followed by the properties of the record
to the right of the operator. If both records contain properties with the same
name, the value of the property from the record to the left of the operator
appears in the result. For example, the result of the expression

{ name:"Eric", mileage:"8000" } & ¬
{ name:"Mitch", framesize:58 }

is

{ name:"Eric", mileage:"8000", frameSize:58 }

C H A P T E R 6

Expressions

178 Operations

ALL OTHER CLASSES

The concatenation of two operands that are not strings or records is a list
whose first item is the value of the operand to the left of the operator, and
whose second item is the value of the operand to the right of the operator.
If the operands to be concatenated are lists, then the result is a list containing
all the items in the list to the left of the operator, followed by all the items in
the list to the right of the operator. For example,

{ "This" } & { "and", "that" }

returns a list containing three items:

{ "This", "and", "that" }

Operator Precedence 6

AppleScript allows you to combine expressions into larger, more complex
expressions. When evaluating expressions, AppleScript uses operator
precedence to determine which operations are performed first. Table 6-2 shows
the order in which AppleScript performs operations.

To see how operator precedence works, consider the following expression.

2 * 5 + 12

--result: 22

To evaluate the expression, AppleScript performs the multiplication operation
2 * 5 first, because as shown in Table 6-2, multiplication has higher
precedence than addition.

The column labeled “Associativity” in Table 6-2 indicates the order in which
AppleScript performs operations if there are two or more operations of the
same precedence in an expression. The word “none” in the Associativity
column indicates that you cannot have multiple consecutive occurrences of the
operation in an expression. For example, the expression 3 = 3 = 3 is not
legal because the associativity for the equal operator (=) is “none.” The word
“unary” indicates that the operator is a unary operator. To evaluate expressions
with multiple unary operators of the same order, AppleScript applies the
operator closest to the operand first, then applies the next closest operator, and
so on. For example, the expression not not not true is evaluated as
not (not (not true)).

C H A P T E R 6

Expressions

Operations 179

You can change the order in which AppleScript performs operations by
grouping expressions in parentheses. As shown in Table 6-2, AppleScript
evaluates expressions in parentheses first. For example, adding parentheses
around 5 + 12 in the following expression causes AppleScript to perform the
addition operation first and changes the result.

2 * (5 + 12)

--result:34

Table 6-2 Operator precedence

Order Operators Associativity Type of operator

1 () Innermost to
outermost

Grouping

2 +
-

Unary Plus or minus sign for numbers

3 ^ Right to left Exponentiation

4 *
/
÷
div
mod

Left to right Multiplication and division

5 +
-

Left to right Addition and subtraction

6 as Left to right Coercion

7 <
≤
>
≥

None Comparison

8 =
≠

None Equality and inequality

9 not Unary Logical negation

10 and Left to right Logical for Boolean values

11 or Left to right Logical for Boolean values

C H A P T E R 6

Expressions

180 Operations

Date-Time Arithmetic 6

AppleScript supports these operations with the + and - operators on date and
time difference values:

date + timeDifference
--result: date

date - date
--result: timeDifference

date - timeDifference
--result: date

where date is a date value and timeDifference is an integer value specifying a
time difference in seconds.

To simplify the notation of time differences, you can also use one or more of
these constants:

Here’s an example:

date "Apr 15, 1992" + 4 * days + 3 * hours + 2 * minutes

It is often useful to be able to specify a time difference between two dates;
for example:

set timeInvestment to current date - "May 16, 1992"

After running this script, the value of the timeInvestment variable is an
integer that specifies the number of seconds between the two dates. If you then
add this time difference to the starting date (May 16, 1992), AppleScript returns
a date value equal to the current date when the timeInvestment variable
was set.

minutes 60

hours 60 * minutes
days 24 * hours
weeks 7 * days

C H A P T E R 6

Expressions

Operations 181

To express a time difference in more convenient form, divide the number of
seconds by the appropriate constant:

31449600 / years

--result: 1

151200 / days

--result: 1.75

To get an integral number of hours, days, and so on, use the div operator:

151200 div days

--result: 1

To get the difference, in seconds, between the current time and Greenwich
mean time, use the scripting addition command Time to GMT. For example, if
you are in Cupertino, California, and your computer is set to Pacific Standard
Time, Time to GMT produces this result:

time to GMT

--result: -28800

For more information about the Time to GMT command, see the AppleScript
Scripting Additions Guide.

183

C H A P T E R 7

Control Statements 7Figure 7-0
Listing 7-0
Table 7-0

Control statements are statements that control when and how other statements
are executed. Most control statements are compound statements—that is,
statements that contain other statements.

By default, AppleScript executes the statements in a script in sequence, one
after the other. Control statements can change the order in which AppleScript
executes statements by causing AppleScript to repeat or skip statements or go
to a different statement.

This chapter describes the following control statements:

■ Tell, which defines the default target to which commands are sent if no
direct object is specified

■ If, which allows you to execute or skip statements based on the outcome of
one or more tests

■ Repeat, which allows you to repeat a series of statements

■ Try, which allows you to handle error messages

■ Considering and Ignoring, which allow you to consider or ignore certain
attributes, such as case, punctuation, and white space, in string comparisons

■ With Timeout, which allows you to specify how long AppleScript waits for
an application command or scripting addition to complete before stopping
execution of the script and returning an error

■ With Transaction, which allows you to take advantage of applications that
support the notion of a transaction—a sequence of related events that should
be performed as if they were a single operation

C H A P T E R 7

Control Statements

184 Characteristics of Control Statements

Characteristics of Control Statements 7

Most control statements are compound statements that contain other state-
ments. For example, the If statement

if today = last day of theMonth

set MonthlyReport to prepareReport(currentMonth)

print MonthlyReport

end if

is a compound statement that contains a Set command and a Print command.
Compound statements begin with one or more reserved words, such as if in
the example above, that identify the type of compound statement. The last line
of a compound statement is always end, which can optionally include the
word that begins the control statement.

Control statements can contain other control statements. For example, this Tell
statement contains the If statement of the previous example.

tell application "ReportWizard"

if today = last day of theMonth

set MonthlyReport to prepareReport(currentMonth)

print MonthlyReport

end if

end tell

Control statements that are contained within other control statements are
sometimes called nested control statements.

All control statements can be compound statements. In addition, some control
statements can be written as single statements. For example, the statement

if (x > y) then return x

is equivalent to

if (x > y) then

return x

end if

C H A P T E R 7

Control Statements

Tell Statements 185

You can use a simple statement only when you’re controlling the execution of a
single statement (such as return x in the previous example).

Tell Statements 7

Tell statements specify the default target, the object to which commands are
sent if they do not include a direct parameter. For example, in the following
Tell statement, the Close command does not include a direct parameter.

tell front window

close

end tell

As a result, the Close command is sent to the front window, the default target
specified in the Tell statement.

When AppleScript encounters a partial reference (a reference that does not
specify every container of an object), it uses the default target to complete it.
For example, in the following Tell statement, the reference word 3 does not
specify all of the containers of the word object, so AppleScript completes it with
the default target.

tell front document of application "Scriptable Text Editor"

delete word 3

end tell

The result is that the Delete command is sent to the third word of the front
document of the Scriptable Text Editor.

A Tell statement also indicates which dictionary AppleScript should use to
interpret words contained in the statement. For example, the previous Tell
statement tells AppleScript to use the Scriptable Text Editor dictionary, which
contains the definitions for the Delete command and the word object. If the
Tell statement had not specified the application, AppleScript would not have
understood the Delete command.

If you refer to another application within a Tell statement to an application,
AppleScript uses the dictionaries of both applications to interpret the words
in the statement. For example, in response to the following Tell statement,

C H A P T E R 7

Control Statements

186 Tell Statements

AppleScript uses the Microsoft Excel dictionary for definitions of the Copy
command and cell object, and the Scriptable Text Editor dictionary for the
definition of the word object.

tell application "Microsoft Excel"

copy word 5 of document "TestDocument" of application ¬

 "Scriptable Text Editor" to Cell "R1C1" of Document ¬

"spreadsheet"

end tell

AppleScript defines two variables, it and me, that you can use in
Tell statements.

The variable it is the default target. The value of it is a reference, as in

tell document "Introduction" of application ¬

"Scriptable Text Editor"

get name of it

end tell

The value of the variable it is document "Introduction" of
application "Scriptable Text Editor". The result of the Get
command is the string "Introduction".

The variable me refers to the current script, as in

property name : "Script"

tell document "Introduction" of application ¬

"Scriptable Text Editor"

get name of me

end tell

--result: "Script"

The reference name of me refers to the name property of the current script.
The result of the Get command is the string "Script".

C H A P T E R 7

Control Statements

Tell Statements 187

AppleScript defines another word, my, that you can use instead of the phrase
of me. For example, the following script is equivalent to the previous example:

property name : "Script"

tell document "Introduction" of application ¬

"Scriptable Text Editor"

get my name

end tell

--result: "Script"

If you refer to a property in a Tell statement without using either it or me,
AppleScript assumes that you want the property of the default target of the Tell
statement. For example, the result of the Get command in the following Tell
statement is "Introduction".

property name : "Script"

tell document "Introduction" of application ¬

"Scriptable Text Editor"

get name

end tell

--result: "Introduction"

If AppleScript cannot find the property in the dictionary of the default target of
the Tell statement, then it assumes you want the property of the current script.
For example, the result of the Get command in the following Tell statement is
1000000.

property x : 1000000

tell document "Introduction" of application ¬

"Scriptable Text Editor"

get x

end tell

--result: 1000000

In addition to distinguishing script properties from object properties, me
and my are used to distinguish user-defined commands (subroutines)
from application commands in Tell statements. For more information,
see Chapter 8, “Handlers.”

C H A P T E R 7

Control Statements

188 Tell Statements

Note
Within tests in Filter references, the direct object is the
object being tested, so the variable it refers to the object
currently being tested. See “Using the Filter Reference
Form” on page 140 for information about the use of it
in tests. ◆

Tell (Simple Statement) 7

A simple Tell statement specifies the object to which to send a command.

SYNTAX

tell referenceToObject to statement

where

referenceToObject is a reference to an application object, system object, or
script object.

statement is any AppleScript statement.

EXAMPLE

tell front window of application "Scriptable Text Editor" to close

NOTES

If referenceToObject specifies an application on a remote computer, additional
conditions must be met. These conditions are described in “References to
Applications,” which begins on page 146.

If referenceToObject specifies an application on the same computer that is not
running, AppleScript launches the application.

C H A P T E R 7

Control Statements

Tell Statements 189

Tell (Compound Statement) 7

A compound Tell statement specifies the default target of the commands
it contains.

SYNTAX

tell referenceToObject
[statement]...

end [tell]

where

referenceToObject is a reference to an application object, system object, or
script object.

statement is any AppleScript statement.

EXAMPLES

tell application "Scriptable Text Editor"

tell front window

close

end tell

end tell

tell front window of application "Scriptable Text Editor"

close

end tell

tell application "Scriptable Text Editor" of machine ¬

"Mitch's PowerBook" of zone "Apple Berkeley"

tell front window

close

end tell

end tell

C H A P T E R 7

Control Statements

190 If Statements

NOTES

If referenceToObject specifies an application on a remote computer, additional
conditions must be met. These conditions are described in “References to
Applications,” which begins on page 146.

If referenceToObject specifies an application on the same computer that is not
running, AppleScript launches the application.

If Statements 7

If statements allow you to define statements or groups of statements that are
executed only in specific circumstances. Each If statement contains one or more
Boolean expressions whose values can be either true or false. AppleScript
executes the statements contained in the If statement only if the value of the
Boolean expression is true.

If statements are also called conditional statements. Boolean expressions in If
statements are also called tests.

The following example uses an If statement to control whether or not a
particular dialog box is displayed:

if dependents > 2 then

display dialog "You might need to file an extra form"

end if

The If statement contains the Boolean expression dependents > 2. If the
value of the Boolean expression is true, the Display Dialog command is
executed. If the value of the Boolean expression is false, the Display Dialog
command is not executed. (Display Dialog is a scripting addition command.
For more information about the way it works, see the AppleScript Scripting
Additions Guide.)

If statements can contain multiple tests. For example, the following statement
contains three tests.

if (x > y) then

set myMessage to " is greater than "

else if (x < y) then

set myMessage to " is less than "

C H A P T E R 7

Control Statements

If Statements 191

else

set myMessage to " is equal to "

end if

set myResult to (x as string) & myMessage & (y as string)

If the expression x > y is true, the value of the variable myMessage is set to
" is greater than " and the If statement is finished. Control passes to the
Set statement, which uses the value of the variable myMessage to set the value
of another variable, called myResult. The value of myResult is a string such
as "7 is greater than 5". If the first Boolean expression is false, the
next expression, x < y, is evaluated with similar results.

An If statement can contain any number of Else If clauses; AppleScript looks
for the first Boolean expression contained in an If or Else If clause that is true,
executes the statements contained in its block (the statements between one Else
If and the following Else If or Else clause), and then exits the If statement.

An If statement can also include a final Else clause. The statements in its block
are executed if no other test in the If statement passes. For example, suppose
the values of x and y in the previous example are both 112. The first two tests,
x > y and x < y, fail. The value of the variable myMessage is set to " is
equal to ", and the value of myResult is "112 is equal to 112".

If statements can be more elaborate, as in this example:

display dialog "How many dependents?" default answer ""

set dependents to (text returned of result) as integer

display dialog "Have you ever been audited?" buttons ¬

{"No", "Yes"}

if button returned of result = "Yes" then

set audit to true

else

set audit to false

end if

if dependents < 9 and audit = false then

display dialog "No extra forms are required."

else if dependents < 9 and audit = true then

display dialog "You might need to file an extra form."

C H A P T E R 7

Control Statements

192 If Statements

else --anything greater than 9

display dialog "You will need to file an extra form."

end if

The example shows how you can create a more complex Boolean expression
with the help of Boolean operators, such as the And operator. The expression

dependents < 9 and audit = false

has two Boolean expressions as operands (dependents < 9, audit =
false). If both expressions are true, the value of the entire expression is
true. Other Boolean operators are Or (another binary operator; if either
of its operands is true, the entire expression is true), and Not (a unary
operator; if its operand is true, the expression is false, and vice versa).
For more information about operators, see Chapter 6, “Expressions.”

If (Simple Statement) 7

A simple If statement contains one Boolean expression and a statement to be
executed if the value of the Boolean expression is true.

SYNTAX

if Boolean then statement

where

Boolean is an expression whose value is true or false.

statement is any AppleScript statement.

EXAMPLES

In the following If statement

if result > 3 then display dialog "The result is " & ¬
result as string

the Display Dialog command is executed only if the value of the Boolean
expression result > 3 is true.

C H A P T E R 7

Control Statements

If Statements 193

If (Compound Statement) 7

A compound If statement contains one or more Boolean expressions and
groups of statements to be executed if the value of the corresponding Boolean
expression is true.

SYNTAX

if Boolean [then]
[statement]...

[else if Boolean [then]
[statement]...]...

[else

[statement]...]
end [if]

where

Boolean is an expression whose value is true or false.

statement is any AppleScript statement.

EXAMPLE

In the following If statement, the statements that copy an individual’s status
report to the end of a department status report are executed only if the date is
March 1, 1993.

if Current Date = "March 1, 1993"

tell application "Scriptable Text Editor"

open file "Status Report"

set myStatus to text from paragraph 1 to ¬
paragraph 10 of document "Status Report"

close document "Status Report"

open file "Department Status"

copy myStatus to end of document "Department Status"

close document "Department Status"

end tell

end if

C H A P T E R 7

Control Statements

194 Repeat Statements

Repeat Statements 7

Repeat statements are used to create loops, or groups of repeated statements,
in scripts. There are several types of Repeat statements, which differ in the way
they specify when the repetition stops.

For example, the following Repeat statement performs the same action a
specified number of times:

repeat 2 times

beep

end repeat

The following Repeat statement performs the same actions while a specific
condition is true:

tell application "Scriptable Text Editor"

set numberOfWindows to (count windows)

repeat while numberOfWindows > 0

close front window

set numberOfWindows to (count windows)

end repeat

end tell

You can also specify an infinite loop, which is a Repeat statement that does
not specify when the repetition stops. You can use an Exit statement within
an infinite loop or any other Repeat statement to immediately exit the
Repeat statement.

C H A P T E R 7

Control Statements

Repeat Statements 195

Here’s an example of a Repeat statement with an Exit statement:

tell application "Scriptable Text Editor"

set numberOfWindows to (count windows)

set i to 1

repeat

if i > numberOfWindows then

exit

end if

print window i

set i to i + 1

end repeat

end tell

More elaborate forms of the Repeat statement use looping variables that you
can refer to in the body of the loop. Here’s an example:

tell application "Scriptable Text Editor"

set contents of front window to ""

set selection to "David Numberman's Top Ten Numbers for Lists

"

repeat with n from 1 to 10

copy (n as string & ". " & n as string & "

") to n

select end of front window

set selection to n

end repeat

end tell

C H A P T E R 7

Control Statements

196 Repeat Statements

Note that two of the strings in the preceding statement include a return
character. These are valid strings even though the surrounding quotation
marks are on different lines within the statement. Running the preceding
statement results in the following text:

David Numberman's Top 10 Numbers for Lists

1. 1

2. 2

3. 3

4. 4

5. 5

6. 6

7. 7

8. 8

9. 9

10. 10

The line

repeat with n from 1 to 10

specifies n as the looping variable, a variable that controls the number
of iterations.

At the beginning of each iteration, AppleScript adds 1 to the value of n. When
the value of the looping variable reaches 10, AppleScript exits the loop.
The expression n as string coerces an integer into a string, while the &
(concatenation) operator joins two strings to make a single string. For more
information about operators and coercing values, see Chapter 6, “Expressions.”

C H A P T E R 7

Control Statements

Repeat Statements 197

Repeat (forever) 7

The Repeat (forever) form of the Repeat statement is an infinite loop. The only
way to exit the loop is by using an Exit statement.

SYNTAX

repeat

[statement]...
end [repeat]

where

statement is any AppleScript statement.

This is an infinite loop; you must use an Exit statement to exit the loop
(see page 204).

EXAMPLE

The following example numbers the paragraphs of a document. It uses the
Exit statement

if paragraphNum > numParagraphs then exit

to exit the loop.

tell document "List"

set numParagraphs to (count paragraphs)

set paragraphNum to 1

repeat

if paragraphNum > numParagraphs then exit

set paragraph paragraphNum to (paragraphNum as string) & " " ¬
& paragraph paragraphNum

set paragraphNum to paragraphNum + 1

end repeat

end tell

C H A P T E R 7

Control Statements

198 Repeat Statements

Repeat (number) Times 7

The Repeat (number) Times form of the Repeat statement repeats a group of
statements a specified number of times.

SYNTAX

repeat integer [times]
[statement]...

end [repeat]

where

integer is an integer that specifies the number of times to repeat the statements
in the body of the loop. The word times after integer is optional.

statement is any AppleScript statement.

EXAMPLE

The following example numbers the paragraphs of a document with the Repeat
(number) Times form of the Repeat statement.

tell document "List"

set numParagraphs to (count paragraphs)

set paragraphNum to 1

repeat numParagraphs times

set paragraph paragraphNum to (paragraphNum as string) & " " ¬
& paragraph paragraphNum

set paragraphNum to paragraphNum + 1

end repeat

end tell

C H A P T E R 7

Control Statements

Repeat Statements 199

Repeat While 7

The Repeat While form of the Repeat statement repeats a group of statements as
long as a particular condition, specified in a Boolean expression, is met.

SYNTAX

repeat while Boolean
[statement]...

end [repeat]

where

Boolean is an expression whose value is true or false. The statements in the
loop are repeated until Boolean becomes false. If Boolean is false when
entering the loop, the statements in the loop are not executed.

statement is any AppleScript statement.

EXAMPLE

The following example numbers the paragraphs of a document with the Repeat
While form of the Repeat statement.

tell document "List"

set numParagraphs to (count paragraphs)

set paragraphNum to 1

repeat while paragraphNum ≤ numParagraphs
set paragraph paragraphNum to (paragraphNum as string) & " " ¬

& paragraph paragraphNum

set paragraphNum to paragraphNum + 1

end repeat

end tell

C H A P T E R 7

Control Statements

200 Repeat Statements

Repeat Until 7

The Repeat Until form of the Repeat statement repeats a group of statements
until a particular condition, specified in a Boolean expression, is met.

SYNTAX

repeat until Boolean
[statement]...

end [repeat]

where

Boolean is an expression whose value is true or false. The statements in the
loop are repeated until Boolean becomes true. If Boolean is true when entering
the loop, the statements in the loop are not executed.

statement is any AppleScript statement.

EXAMPLE

This example numbers the paragraphs of a document with the Repeat Until
form of the Repeat statement.

tell document "List"

set numParagraphs to (count paragraphs)

set paragraphNum to 1

repeat until paragraphNum > numParagraphs

set paragraph paragraphNum to (paragraphNum as string) & " " ¬
& paragraph paragraphNum

set paragraphNum to paragraphNum + 1

end repeat

end tell

C H A P T E R 7

Control Statements

Repeat Statements 201

Repeat With (loopVariable) From (startValue) To (stopValue) 7

In the Repeat With (loopVariable) From (startValue) To (stopValue) form of the
Repeat statement, the looping variable is an integer that is increased by a
specified value after each iteration of the loop. The loop terminates when
the value of the variable is greater than a predefined stop value.

SYNTAX

repeat with loopVariable from startValue to stopValue [by stepValue]
[statement]...

end [repeat]

where

loopVariable is used to control the number of iterations. It can be any
previously defined variable or a new variable you define in the Repeat
statement (see “Notes”).

startValue (an integer) is the value assigned to loopVariable when the loop
is entered.

stopValue (an integer) is the value of loopVariable at which iteration ends.
Iteration continues until the value of loopVariable is greater than the value
of stopValue.

stepValue (an integer) is the value added to loopVariable after each iteration of
the loop. The default value of stepValue is 1.

statement is any AppleScript statement.

EXAMPLE

The following example numbers the paragraphs of a document with the Repeat
With (loopVariable) From (startValue) To (stopValue) form of the Repeat statement.

tell document "List"

repeat with n from 1 to (count paragraphs)

set paragraph n to (n as string) & " " & paragraph n

end repeat

end tell

C H A P T E R 7

Control Statements

202 Repeat Statements

NOTES

You can use an existing variable as the looping variable in a Repeat statement
or define a new one in the Repeat statement. You cannot change the value of
the looping variable in the loop body. The variable is undefined after the loop
has been executed, but you can redefine it outside the loop.

AppleScript evaluates startValue, stopValue, and stepValue when it begins
executing the loop and stores the values internally. If you change the values
in the body of the loop, it has no effect on the execution of the loop.

Repeat With (loopVariable) In (list) 7

In the Repeat With (loopVariable) In (list) form of the Repeat statement, the
looping variable is a reference to an item in a list. The number of iterations is
equal to the number of items in the list. In the first iteration, the value of the
variable is item 1 of list (where list is the list you specified in the first line of
the statement), in the second iteration, its value is item 2 of list, and so on.

SYNTAX

repeat with loopVariable in list
[statement]...

end [repeat]

where

loopVariable is any previously defined variable or a new variable you define in
the Repeat statement (see “Notes”).

list is a list or a reference (such as words 1 thru 5) whose value is a list. list
can also be a record; AppleScript coerces the record to a list (see “Notes”).

statement is any AppleScript statement.

EXAMPLE

The following example numbers the paragraphs of a document with the Repeat
With (loopVariable) In (list) form of the Repeat statement. The value of the

C H A P T E R 7

Control Statements

Repeat Statements 203

reference paragraphs (the paragraphs of document "List") is a
list of the paragraphs in the document.

tell document "List"

set paragraphNum to 1

repeat with n in paragraphs

set paragraph paragraphNum to ¬
(paragraphNum as string) & " " & contents of n

set paragraphNum to paragraphNum + 1

end repeat

end tell

NOTES

You can use an existing variable as the looping variable in a Repeat statement
or define a new one in the Repeat statement. You cannot change the value of
the looping variable in the loop body. The variable is undefined after the loop
has been executed, but you can redefine it outside the loop.

AppleScript evaluates loopVariable in list as item 1 of list, item 2 of
list, item 3 of list, and so on until it reaches the last item in the list:

repeat with i in {1, 2, 3, 4}

set x to i

end repeat

--result: item 4 of {1, 2, 3, 4}

To get the value of an item in the list, you must use the contents of operator:

repeat with i in {1, 2, 3, 4}

set x to contents of i

end repeat

--result: 4

If the value of list is a record, AppleScript coerces the record to a list by
stripping the property labels. For example, {a:1, b:2, c:3} becomes
{1, 2, 3}.

C H A P T E R 7

Control Statements

204 Try Statements

Exit 7

An Exit statement is used in a Repeat statement to exit the Repeat statement.
When AppleScript executes an Exit statement, it terminates loop execution and
resumes execution with the next statement following the Repeat statement. You
cannot use Exit statements outside of Repeat statements.

SYNTAX

exit

EXAMPLE

set i to 1

tell application "Scriptable Text Editor"

repeat

if i > (count windows)

exit

end

print window i

set i to i + 1

end repeat

end tell

Try Statements 7

Scripts don’t always work perfectly. When a script is executed, errors can occur
in the Operating System (for example, when a specified file isn’t found), in an
application (for example, when you specify an object that doesn’t exist), and in
the script itself. When an error occurs, AppleScript sends a special message
known as an error message. An error message is a message that is returned by
an application, AppleScript, or the Operating System if an error occurs during
the handling of a command. An error message can include an error number,

C H A P T E R 7

Control Statements

Try Statements 205

which is an integer that identifies the error, an error expression, which is an
expression, usually a string, that describes the error, and other information.

To handle error messages, scripts can include error handlers. Error handlers
are contained in compound statements, called Try statements, that define the
scope of the error handlers they contain. If an error message occurs and there
is no handler for it, script execution stops.

Kinds of Errors 7

Every script error falls into one of the following categories:

■ Operating System errors are errors that occur when AppleScript or an
application requests services from the Operating System. They are rare, and,
more importantly, there’s usually nothing you can do about them in a script.
A few, such as "File <name> wasn't found" and "Application
isn't running", make sense for scripts to handle. These errors are listed
in Appendix C, “Error Messages.”

■ Apple event errors are Operating System errors that occur when the
underlying message system for AppleScript—known as Apple events—fails.
Many of these errors, such as "No user interaction allowed", are
of interest to users. Also of interest to users are errors that have to do with
reference forms, as well as errors like "No such object". These errors are
listed in Appendix C, “Error Messages.”

■ Apple Event Registry errors are errors returned by applications when
handling standard AppleScript commands (commands that apply to all
applications). Many of these, such as "The specified object is a
property, not an element", are of interest to users and should be
handled. These errors are listed in Appendix C, “Error Messages.”

■ AppleScript errors are errors that occur when AppleScript processes script
statements. Nearly all of these are of interest to users. These errors are listed
in Appendix C, “Error Messages.”

■ Application errors are any additional errors returned by applications.
Applications can define any number of additional error messages for
the AppleScript commands they handle. These errors are listed in the
documentation for applications that define them.

C H A P T E R 7

Control Statements

206 Try Statements

■ Script errors are error messages sent by a script using the Error command.
Scripts that define additional errors will often include descriptions of the
errors in their documentation.

Note
Many “errors” are the result of the normal operation of a
command. For example, the Choose File command returns
error –128 if the user presses the Cancel button in the
resulting dialog box. Scripts must routinely handle such
errors to ensure normal operation. ◆

How Errors Are Handled 7

When an error occurs, AppleScript checks to see if the statement that caused
the error is contained in a Try statement. A Try statement is a two-part
compound statement that contains a series of AppleScript statements, followed
by an error handler to be invoked if any of those statements causes an error. If
the statement that caused the error is included in a Try statement, then
AppleScript passes control to the error handler in the Try statement. After the
error handler completes, control passes to the statement immediately following
the end of the Try statement.

If the error occurred within a subroutine and AppleScript does not find a Try
statement in that subroutine, AppleScript checks to see if the statement that
invoked the current subroutine is contained in a Try statement. If that
statement is not contained in a Try statement, AppleScript continues up the call
chain, going to the statement that invoked that subroutine, if any, and so on. If
none of the calls in the call chain is contained in a Try statement, AppleScript
stops execution of the script.

Writing a Try Statement 7

A Try statement is two-part compound statement. The first part, which begins
with the word try, is a collection of AppleScript statements. The second part,
which begins with the words on error, is an error handler—a series of
statements that is executed if any of the statements in the first part causes an
error message. The Try statement ends with the word end (followed
optionally by error or try).

C H A P T E R 7

Control Statements

Try Statements 207

The error handler can include up to five parameter variables (also called
formal parameters) that represent the actual information sent in the error
message when the error occurs. When the error handler is called, the parameter
variables become local variables in the error handler.

Try 7

A Try statement is a compound statement consisting of a list of AppleScript
statements followed by an error handler to be executed if any of the statements
cause an error message.

SYNTAX

try

[statement]...
on error ¬

[errorMessageVariable] ¬

[number errorNumberVariable] ¬

[from offendingObjectVariable] ¬

[partial result resultListVariable] ¬
[to expectedTypeVariable]

[global variable [, variable]...]
[local variable [, variable]...]
[statement]...

end [error | try]

where

statement is any AppleScript statement.

errorMessageVariable (an identifier) is a parameter variable for the expression,
usually a string, that describes the error. You use this parameter variable to
refer to the error expression within the error handler.

errorNumberVariable (an identifier) is a parameter variable for the error number
(an integer). You use this parameter variable to refer to the error number within
the error handler.

C H A P T E R 7

Control Statements

208 Try Statements

offendingObjectVariable (an identifier) is a parameter variable for the reference
to the application or object that caused the error (a reference). You use this
parameter variable to refer to the object that caused the error within the
error handler.

resultListVariable (an identifier) is a parameter variable for the results for objects
that were handled before the error occurred. Its value is a list that can contain
values of any class. You use this parameter variable to refer to the partial
results within the error handler. This parameter applies only to commands that
return results for multiple objects. For example, if an application handles the
command get words 1 thru 5 and an error occurs when handling word 4,
the partial result parameter contains the results for the first three words.

expectedTypeVariable (an identifier) is a parameter variable for the expected
value class (a class identifier)—that is, the value class to which AppleScript
was attempting to coerce the value of offendingObjectVariable. If an application
receives data of the wrong class and cannot coerce it to the correct class, the
value of this parameter variable is the class of the coercion that failed. (The
example at the end of this definition demonstrates how this works.)

variable is an identifier for either a global variable or a local variable that can be
used in the handler. The scope of a local variable is the handler. You cannot
refer to a local variable outside the handler. The scope of a global variable can
extend to any other part of the script, including other handlers and script
objects. For detailed information about the scope of local and global variables,
see “Scope of Script Variables and Properties,” which begins on page 252.

EXAMPLES

The following Try statement provides an error handler for the Choose File
command. (For a complete description of the Choose File command, see the
AppleScript Scripting Additions Guide.) The Choose File command returns an
error if the user clicks the Cancel button in the Choose File dialog box. The
error handler gives the user a chance to continue if an error occurs.

try

choose file

set fileName to result

C H A P T E R 7

Control Statements

Try Statements 209

on error errText number errNum

display dialog "An error has occurred: " & ¬
errText & "\rDo you want to continue " & ¬
"using the default file?" ¬
buttons {"Cancel", "Continue"} default button 1

if button returned of result = "Cancel"

error number -128 --quit silently

else

display dialog "The script will continue " & ¬
"using the default file."

set fileName to defaultFileName

end if

end try

For the preceding example to work correctly, defaultFileName must have
been set to a filename earlier in the same script.

The next example demonstrates the use of the To keyword to capture addi-
tional information about an error that occurs during a coercion failure.

tell application "Scriptable Text Editor"

try

repeat with i from 1 to "Toronto"

i

end repeat

on error from obj to newClass

{obj, newClass}

end try

end tell

--result: {"Toronto", integer}

The Repeat statement fails because the string "Toronto" is the wrong class.
The error handler simply returns the values of obj (the offending value,
"Toronto") and newClass (the class of the coercion that failed, integer) in
the result window.

C H A P T E R 7

Control Statements

210 Try Statements

Signaling Errors in Scripts 7

A script can signal an error—which can then be handled by an error handler—
with the Error command. This allows scripts to define their own messages for
errors that occur within the script.

Error 7

The Error command signals an error in a script.

SYNTAX

error ¬

[errorMessage] ¬

[number errorNumber] ¬

[from offendingObject] ¬

[partial result resultList] ¬

[to expectedType]

where

errorMessage is an expression, usually a string, describing the error. Although
this parameter is not required, you should provide descriptive expressions
for errors wherever possible (a string is the best way to inform the user of an
error), and you should always provide an expression if you do not include a
number parameter. If you do not include an error expression, an empty string
("") is passed to the error handler.

errorNumber is the error number for the error. You do not have to include an
error number, but if you do, the number must not be any of the error numbers
listed in Appendix C, “Error Messages.” In general, positive numbers from 500
to 10,000 do not conflict with error numbers for AppleScript, the Operating
System, or Apple events. If you do not include a number parameter, the value
-2700 is passed to the error handler.

offendingObject is a reference to the object, if any, that caused the error. If you
provide a partial reference, AppleScript completes it using the value of the
default object.

C H A P T E R 7

Control Statements

Try Statements 211

resultList applies only to commands that return results for multiple objects. If
results for some, but not all, of the objects specified in the command are
available, you can include them in the partial result parameter. If you do
not include a partial result parameter, an empty list ({}) is passed to the
error handler.

expectedType is a class identifier. If a parameter specified in the command was
not of the expected class, and AppleScript was unable to coerce it to the
expected class, then you can include the expected class in the to parameter.

EXAMPLES

The following example shows how to signal and provide a handler for an error.
The CentimeterConversion subroutine signals error number 750 if its
parameter is not a number. The error handler tests the error number, and if it
is equal to 750, returns a string indicating that the parameter must be a real
number or integer.

on CentimeterConversion from x

--make sure the parameter is a real number or an integer

try

if {integer, real} contains class of x then

return x * 2.54

else

error number 750

end if

on error number errorNumber

if errorNumber = 750 then

return "The parameter must be a real number or integer."

else

error errorNumber --unknown error, resignal

end if

end try

end CentimeterConversion

CentimeterConversion from "Cupertino"

--result: "The parameter must be a real number or integer."

C H A P T E R 7

Control Statements

212 Try Statements

You can use the Error command to resignal an error. For example, in the
following Try statement, the Error command in the error handler resignals
the error exactly as it was received.

try

word 5 of "one two three"

on error number errNum from badObj

--statements that handle the error

error number errNum from badObj

end try

In the following Try statement, the Error command in the error handler
resignals the error, but changes the error message and error number. The
new error number is 600.

try

word 5 of "one two three"

on error

--statements that determine the cause of the error

error "There are not enough words." number 600

end try

C H A P T E R 7

Control Statements

Considering and Ignoring Statements 213

Considering and Ignoring Statements 7

Considering statements allow you to control the way AppleScript executes
operations and commands by listing specific characteristics, called attributes,
to be taken into account as the operations and commands are executed.
Ignoring statements work the same way, except that you list specific attributes
to be ignored.

The attributes you can use include

■ case, white space, and others that affect string comparisons

■ an attribute called application responses that controls whether or not
AppleScript waits for responses from commands sent to applications

Here’s an example of a string comparison without a Considering statement:

"This" = "this"

--result: true

The value of the string comparison is true, because by default, AppleScript
does not distinguish uppercase from lowercase letters.

Here’s an example of the same comparison within a Considering statement:

considering case

"This" = "this"

end considering

--result: false

The Considering statement specifies that a particular attribute of strings—
their case—is to be used in comparisons. As a result the comparison
"This" = "this" is now false, because the uppercase “T” in "This"
does not match the lowercase “t” in "this".

C H A P T E R 7

Control Statements

214 Considering and Ignoring Statements

Considering/Ignoring 7

Considering and Ignoring statements cause AppleScript to consider or ignore
specific characteristics, called attributes, as it executes groups of statements.

SYNTAX

considering attribute [, attribute ... and attribute] ¬
[but ignoring attribute [, attribute ... and attribute]]

[statement]...
end considering

ignoring attribute [, attribute ... and attribute] ¬
[but considering attribute [, attribute ... and attribute]]

[statement]...
end ignoring

where

statement is any AppleScript statement.

attribute is an attribute to be considered or ignored. Attributes are listed next
under “Attributes”.

ATTRIBUTES

An attribute is a characteristic that can be considered or ignored in a
Considering or Ignoring statement. A Considering or Ignoring statement
can include any of the following attributes:

case: In string comparisons, uppercase letters are not distinguished from
lowercase letters (all letters are treated as lowercase letters). If this attribute is
considered, uppercase letters are distinguished from lowercase letters.

white space: Spaces, tab characters, and return characters are considered
in string comparisons. If this attribute is ignored, the strings are compared as
if these characters were not present; for example "Brick house" would be
considered equal to "Brickhouse".

C H A P T E R 7

Control Statements

Considering and Ignoring Statements 215

diacriticals: Diacritical marks (such as ´, `, ˆ, ¨, and ˜) are considered in
string comparisons. If this attribute is ignored, "résumé" is considered equal
to "resume", and so on.

hyphens: In string comparisons, hyphenated words are considered different
from their nonhyphenated counterparts. If this attribute is ignored, the strings
are compared as if any hyphens were not present; for example "anti-war"
would be considered equal to "antiwar".

expansion: In string comparisons, AppleScript normally treats the
characters æ, Æ, œ, and Œ as identical to the character pairs ae, AE, oe,
and OE, respectively. If this attribute is ignored, AppleScript treats these
characters like single characters; for example æ would be considered not
equal to the character pair ae.

punctuation: The punctuation marks (. , ? : ; ! \ ' " `) are considered in
string comparisons. If this attribute is ignored, the strings are compared as if
these punctuation marks were not present; for example "This!" would be
considered equal to "This".

application responses: Normally, AppleScript waits for a response
from each application command before proceeding to the next statement or
operation. The response indicates if the command completed successfully,
and also returns results and error messages, if there are any. If this attribute is
ignored, AppleScript does not wait for responses from application commands
before proceeding to the next statement, and ignores any results or error
messages that are returned. Results and error messages from AppleScript
commands, scripting additions, and expressions are not affected by the
application responses attribute.

EXAMPLES

considering case

"a" comes before "b"

end considering

considering case and white space but ignoring diacriticals

"a" comes after "b"

end considering

C H A P T E R 7

Control Statements

216 Considering and Ignoring Statements

ignoring punctuation

if "this !,:book" = "this book" then

(* additional statements *)

end if

end ignoring

NOTES

The case, white space, diacriticals, hyphens, expansion, and
punctuation considerations apply only to comparisons performed by
AppleScript. Comparisons are performed by AppleScript if the first operand
in the comparison is a value in a script; if the first operand is a reference
to an application or system object, the comparison is performed by the
application or operating system.

In contrast, the application responses consideration applies only to
application commands. AppleScript commands, scripting additions, and
AppleScript expressions are not affected.

As with all other control statements, you can nest Considering and Ignoring
statements. If the same attribute appears in both an outer and inner statement,
the attribute specified in the inner statement takes precedence. For example, in
the following statement, the first comparison is true, because case attribute is
ignored (as specified in the Ignoring statement), while the second comparison
is false, because the case attribute is once again considered (as specified in
the inner Considering statement).

ignoring case and punctuation

if "This" = "this" then beep 1 --true

considering case

if "This" = "this" then beep 2 --false

end considering

end considering

When attributes in an inner Considering or Ignoring statement are different
from those in outer statements, they are added to the attributes to be
considered and ignored. For example, in the following statement, the
first comparison is false, because only case is ignored, while the second
comparison is true, because both case and white space are ignored.

C H A P T E R 7

Control Statements

With Timeout Statements 217

ignoring case

if "This or that" = "thisorthat" then beep 2 --false

ignoring white space

if "This or that" = "thisorthat" then beep 1 --true

end ignoring

end ignoring

With Timeout Statements 7

When AppleScript sends a command to an application, it normally waits for
the command to complete execution before continuing with the rest of the
script. If the command takes longer than one minute to complete, AppleScript
stops running the script and returns the error "event timed out".

With Timeout statements let you change how long AppleScript waits before
stopping execution of a script. The amount of time you specify in a With
Timeout statement applies to some types of commands within the statement
that are sent to other applications, but not to any commands sent to the
application that’s running the script.

The specified time applies to all application commands and to any scripting
addition commands whose targets are application objects—that is,
scripting addition commands within Tell statements to application objects
or scripting addition commands whose direct parameters are application
objects. The time specified by a With Timeout statement does not apply to
AppleScript commands, AppleScript operations, or scripting addition
commands whose targets are not application objects.

Note
If you want AppleScript to proceed to the next statement
without waiting for application commands to complete,
use an Ignoring statement to ignore the application
responses attribute. For more information, see
“Considering and Ignoring Statements” on page 213. ◆

C H A P T E R 7

Control Statements

218 With Timeout Statements

With Timeout 7

With Timeout statements let you change how long AppleScript can wait before
stopping execution of application and scripting addition commands that are
sent to other applications.

SYNTAX

with timeout [of] integer second[s]
[statement]...

end [timeout]

where

integer is an integer that specifies the amount of time, in seconds, AppleScript
allows for each application command or command addition contained in
the With Timeout statement that is sent to any application other than the
current one.

statement is any AppleScript statement.

EXAMPLE

The following With Timeout statement gives the user five minutes, instead of
the usual one minute, to type in his or her name.

try

with timeout of 300 seconds

tell application "Scriptable Text Editor"

display dialog "What is your name?" ¬

default answer ""

end tell

end timeout

on error

beep

end

C H A P T E R 7

Control Statements

With Transaction Statements 219

With Transaction Statements 7

Some applications, such as databases, support the notion of a transaction—
that is, a sequence of related events that should be performed as if they were
a single operation. The With Transaction statement allows you to specify
transactions for such applications.

At the beginning of a With Transaction statement, AppleScript requests a
transaction ID from the target application (established by an enclosing Tell
statement) and attaches that transaction ID to every Apple event it sends to
the target application as a result of executing commands in the body of the
With Transaction statement.

Whenever AppleScript exits a With Transaction statement, it informs the
application that the transaction is over, even if the exit occurs before the end
of the statement because of an error. Thus, if an error occurs within the body
of the With Transaction statement but is not handled within the statement,
AppleScript exits the statement, the application is informed that the transaction
is over, and the error continues through subsequent statements until it
is handled.

With Transaction 7

With Transaction statements cause AppleScript to associate a single transaction
ID with any events it sends to a target application as a result of executing
commands in the body of the With Transaction statement.

SYNTAX

with transaction [session]
[statement]...

end [transaction]

where

session is an object that specifies a specific session.

statement is any AppleScript statement.

C H A P T E R 7

Control Statements

220 With Transaction Statements

EXAMPLES

This example uses a With Transaction statement to ensure that a record can be
modified by one user without being modified by another user at the same time.

tell application "Small DB"
with transaction

set oldName to Field "Name"
set oldAddress to Field "Address"
set newName to display dialog ¬

"Please type a new name" ¬
default answer oldName

set newAddress to display dialog ¬
"Please type the new address" ¬
default answer oldAddress

set Field "Name" to newName
set Field "Address" to newAddress

end transaction
end tell

The Set statements obtain the current values of the Name and Address fields
and invite the user to change them. Enclosing these Set statements in a single
With Transaction statement informs the application that other users should not
be allowed to access the same record at the same time.

With Transaction statements only work with applications that explicitly
support them. Some applications only support With Transaction statements
(like the one in the previous example) that do not take a session object as a
parameter. Other applications support both With Transaction statements
that have no parameter and With Transaction statements that take a session
parameter.

The following example demonstrates how to specify a session for a With
Transaction statement.

tell application "Super DB"
set mySession to make session with ¬

data {user: "Bob", password: "Secret"}
with transaction mySession

...
end transaction

end tell

Using Subroutines 221

C H A P T E R 8

Handlers 8Figure 8-0
Listing 8-0
Table 8-0

Handlers are collections of statements that are executed in response to
commands or error messages.

This chapter describes

■ subroutines, which are handlers for user-defined commands

■ command handlers for system or application commands

■ command handlers for script applications

■ the scope of script variables and properties declared in handlers and
elsewhere in scripts

Using Subroutines 8

Subroutines are collections of statements that AppleScript runs in response
to user-defined commands. They are similar to functions, methods, and
procedures in other programming languages. This section explains how to
write and call subroutines.

Subroutines are useful in scripts that perform the same action in more than one
place. For example, if you have a series of statements for comparing values and
you need to use those statements at several places in a script, you can package
the statements as a subroutine and call it from anywhere in the script. Your
script becomes shorter and easier to maintain. In addition, you can give
subroutines descriptive names that make their purposes clear and make scripts
easy to read.

C H A P T E R 8

Handlers

222 Using Subroutines

Here’s a subroutine, called minimumValue, that returns the smaller of
two values:

--minimumValue subroutine:
on minimumValue(x, y)

if x ≤ y then
return x

else
return y

end if
end minimumValue

--how to call minimumValue:
minimumValue(5, 105)

The first line of the minimumValue subroutine specifies the parameters of the
subroutine. These can be positional parameters—like x and y in the example—
where the order of the parameters is significant, or labeled parameters—
like those for AppleScript and application commands—where the order of
parameters other than the direct parameter doesn’t matter.

The minimumValue subroutine includes two Return statements. A Return
statement is one of the ways a subroutine can return a result. When
AppleScript executes a Return statement, it returns the value (if any) listed
in the statement and immediately exits the subroutine. If AppleScript executes
a Return statement without a value, it exits the subroutine immediately
and does not return a value.

If a subroutine does not include any Return statement, AppleScript executes
the statements in the subroutine and, after handling the last statement, returns
the value of the last statement in the subroutine. If the last statement does not
return a value, then the subroutine does not return a value.

When AppleScript has finished executing a subroutine, it passes control to the
place in the script immediately after the place where the subroutine was called.
If a subroutine call is part of an expression, AppleScript uses the value returned
by the subroutine to evaluate the expression. For example, to evaluate the
following expression, AppleScript calls the subroutine for minimumValue.

minimumValue(5, 105) + 100

After the value of minimumValue is returned, AppleScript evaluates the rest of
the expression.

C H A P T E R 8

Handlers

Using Subroutines 223

Types of Subroutines 8

There are two types of subroutines: those with labeled parameters and those
with positional parameters.

■ Labeled parameters are identified by their labels and can be listed in any
order. Subroutines with labeled parameters can also have a direct parameter.
The direct parameter, if present, must be listed first.

■ Positional parameters must be listed in a specific order, which is defined in
the subroutine definition.

For example, the following statement calls a subroutine with positional
parameters.

minimumValue(150, 4000)

The following statement calls a subroutine with labeled parameters. The direct
parameter is the list of filenames. The labeled parameters are identified by the
labels stringToFind and checkCase.

findFiles of {"March Expenses", "April Expenses", ¬
"May Expenses", "June Expenses"} given ¬
stringToFind:"LeChateau", checkCase:false

The definition for a subroutine determines what kind of parameters the
subroutine requires. When you call a subroutine, you must list its parameters
in the same way they are specified in the subroutine definition.

You can also have subroutines with no parameters. To indicate that a subroutine
has no parameters, you must include a pair of empty parentheses after the
subroutine name in both the subroutine definition and the subroutine call. For
example, the following script shows the definition and subroutine call for a
subroutine called helloWorld that has no parameters.

on helloWorld()

display dialog "Hello World"

end

helloWorld()

C H A P T E R 8

Handlers

224 Using Subroutines

Scope of Subroutine Calls in Tell Statements 8

If you need to call a subroutine from within a Tell statement, you must use the
reserved words of me or my to indicate that the subroutine is part of the
script—not a command that should be sent to the object of the Tell statement.

For example, the minimumValue subroutine call in the following Tell
statement is unsuccessful, because AppleScript sends the minimumValue
command to the Scriptable Text Editor. (You get an error message saying
that the Scriptable Text Editor does not understand the minimumValue
command.)

tell application "Scriptable Text Editor"

minimumValue(12, 400)

copy result as string to word 15 of front document

end tell

(* result: the subroutine call is unsuccessful because

AppleScript sends the minimumValue command to the

Scriptable Text Editor *)

If you use the words of me in the subroutine call, as shown in the following
Tell statement, the subroutine call is successful, because AppleScript knows
that the subroutine is part of the script.

tell application "Scriptable Text Editor"

minimumValue(12, 400) of me

copy result as string to word 15 of front document

end tell

(* result: the subroutine call is successful because the

words "of me" tell AppleScript that the minimumValue

command is part of the script *)

The word my before the subroutine call is a synonym for the words of me after
the subroutine call. For example, the following two subroutine calls are
equivalent:

minimumValue(12, 400) of me

my minimumValue(12, 400)

C H A P T E R 8

Handlers

Using Subroutines 225

Checking the Classes of Subroutine Parameters 8

You cannot specify the class of a parameter in a subroutine definition. You can,
however, get the value of the Class property of a parameter and check it to
see if the parameter belongs to the correct class. If it doesn’t, you may be able
to coerce it with the As operator, or failing that, you can return an error.
(For information about coercing values, see Chapter 6, “Expressions.” For
information about returning errors, see “Try Statements,” which begins on
page 204.)

Here’s an example of a subroutine that checks to see if its parameter is a real
number or an integer:

on CentimeterConversion from x

--make sure the parameter is a real number or an integer

if class of x is contained by {integer, real}

return x * 2.54

else

error "The parameter must be a real number or an integer"

end if

end CentimeterConversion

Recursive Subroutines 8

A recursive subroutine is a subroutine that calls itself. Recursive subroutines
are legal in AppleScript. You can use them to perform repetitive actions. For
example, this recursive subroutine generates a factorial.

on factorial(x)

if x > 0 then

return x * (factorial(x - 1))

else

return 1

end if

end factorial

factorial(10)

C H A P T E R 8

Handlers

226 Using Subroutines

To generate 10 factorial, the subroutine factorial is called once from the
top level of the script, and then calls itself ten more times, until the value of
x is 0. When x is equal to 0, AppleScript skips to the Else clause and finishes
executing all the partially executed subroutines, including the original
factorial subroutine call.

When you call a recursive subroutine, AppleScript keeps track of the variables
and pending statements in the original (partially executed) subroutine until the
recursive subroutine has completed. The limit on the number of pending
subroutines depends on the amount of memory available.

Saving and Loading Libraries of Subroutines 8

So far, you’ve seen examples of defining and calling subroutines in the
same script. This is useful for functions that are repeated more than once in
the same script. But you can also write subroutines for generic functions, such
as numeric operations, that are useful in many different scripts. To make a
subroutine available in any script, save it as a compiled script, and then use
the scripting addition command Load Script to make it available in a particular
script. You can use this technique to create libraries of subroutines for use
in many scripts.

For example, the following script contains three subroutines:
centimeterConversion, which converts inches to centimeters;
factorial, which returns the factorial of a number; and min, which
returns the smallest number in a list of numbers.

--the centimeterConversion subroutine converts inches to centimeters

on centimeterConversion from x

if class of x is contained by {integer, real} then

return x * 2.54

else

error "The parameter must be a real number or an integer."

end if

end centimeterConversion

C H A P T E R 8

Handlers

Using Subroutines 227

--the factorial() subroutine returns the factorial of a number

on factorial(x)

if x > 0 then

return x * (factorial(x - 1))

else

return 1

end if

end factorial

--the min() subroutine returns the smallest number in a list

on min(numberList)

if class of numberList ≠ list or numberList = {} then ¬
return numberList

if length of numberList = 1 then return item 1 of numberList

copy item 1 of numberList to frontNumber

copy length of numberList to listLength

copy min(items 2 thru listLength of numberList) to tailNumber

if frontNumber > tailNumber then

return tailNumber

else

return frontNumber

end if

end min

To save this script as a compiled script, choose Save As from the Script Editor’s
File menu and choose Compiled Script from the Kind pop-up menu. Then save
the script as a file called Numeric Operations. (If you are using a different
script editor, see the documentation that came with it.)

After you save the script as a compiled script, use the Load Script scripting
addition command to make the subroutines it contains available in the current
script. For example, the Load Script command in the following script assigns
the compiled script Numeric Operations to the variable NumberLib. To call the
subroutines in Numeric Operations, use a Tell statement. The Tell statement in

C H A P T E R 8

Handlers

228 Subroutine Definitions and Calls

the example calls the factorial subroutine. (You must have a compiled
script called Numeric Operations in the specified location for this script to
work correctly.)

set NumberLib to (load script file "MacHD:Scripts:Numeric Operations")

tell NumberLib

factorial(10)

end tell

Note
The Load Script scripting addition command loads the
compiled script as a script object. For a definition of Load
Script, see the AppleScript Scripting Additions Guide.

Script objects are user-defined objects that are treated as
values by AppleScript; for more information about them,
see Chapter 9, “Script Objects.” ◆

Subroutine Definitions and Calls 8

A subroutine definition contains

■ a template for calls to the subroutine

■ optional variable declarations

■ statements; among these can be a Return statement that when executed
returns a value and exits the subroutine

You cannot nest subroutine definitions; that is, you cannot define a subroutine
within a subroutine definition.

The way you call a subroutine is determined by the way the subroutine
was defined:

■ You must provide all the parameters specified in the definition.

■ You must provide either labeled parameters or positional parameters, as
specified in the definition.

The sections that follow describe how to define and call subroutines.

C H A P T E R 8

Handlers

Subroutine Definitions and Calls 229

Subroutines With Labeled Parameters 8

This section describes the syntax for defining and calling subroutines with
labeled parameters. Examples of subroutines that use this syntax begin
on page 232.

Subroutine Definition, Labeled Parameters 8

The definition for a subroutine with labeled parameters lists the labels to use
when calling the subroutine and the statements to be executed when it is called.

SYNTAX

(on | to) subroutineName ¬

[[of | in] directParameterVariable] ¬

[subroutineParamLabel paramVariable]... ¬

[given label:paramVariable [, label:paramVariable]...]
[global variable [, variable]...]
[local variable [, variable]...]
[statement]...

end [subroutineName]

where

subroutineName (an identifier) is the subroutine name.

directParameterVariable (an identifier) is a parameter variable (also called a
formal parameter) that represents the actual value of the direct parameter. You
use this identifier to refer to the direct parameter in the body of the subroutine
definition. As with application commands, the direct parameter must be first.

Note
If a subroutine includes a direct parameter, the subroutine
must also include either the subroutineParamLabel
parameter or the given label:paramVariable parameter. ◆

C H A P T E R 8

Handlers

230 Subroutine Definitions and Calls

subroutineParamLabel is one of the following labels: above, against, apart
from, around, aside from, at, below, beneath, beside, between, by,
for, from, instead of, into, on, onto, out of, over, thru (or through),
under. These labels are the only labels that can be used without the special
label given. As in other commands, each label must be unique among
the labels for the subroutine (that is, you cannot use the same label for more
than one parameter).

paramVariable (an identifier) is a parameter variable for the actual value of a
parameter. You use this identifier to refer to the parameter in the body of
the subroutine.

label is any parameter label. This can be any valid AppleScript identifier. You
must use the special label given to specify parameters whose labels are not
among the labels for subroutineParamLabel.

variable is an identifier for either a global or local variable that can be used in
the handler. The scope of a local variable is the handler. You cannot refer to a
local variable outside the handler. The scope of a global variable can extend to
any other part of the script, including other handlers and script objects. For
detailed information about the scope of local and global variables, see “Scope
of Script Variables and Properties,” which begins on page 252.

statement is any AppleScript statement.

NOTES

For examples of subroutines with labeled parameters, see page 232.

Subroutine Call, Labeled Parameters 8

A subroutine call for a subroutine with labeled parameters lists parameters
other than the direct parameter in any order, using the labels in the subroutine
definition to identify the parameter values.

C H A P T E R 8

Handlers

Subroutine Definitions and Calls 231

SYNTAX

subroutineName ¬

[[of | in] directParameter] ¬

[[subroutineParamLabel parameterValue] ¬

| [with labelForTrueParam [, labelForTrueParam]... ¬

[(and | or | ,) labelForTrueParam]] ¬

| [without labelForFalseParam [, labelForFalseParam]...] ¬

[(and | or | ,) labelForFalseParam]] ¬

| [given label:parameterValue ¬

[, label:parameterValue]...]]...

where

subroutineName (an identifier) is the name of the subroutine.

directParameter is the direct parameter, if one is included in the subroutine
definition. It can be any valid expression. As in application commands, the
direct parameter must be first if it is included at all.

subroutineParamLabel is one of the following labels used in the definition of
the subroutine: above, against, apart from, around, aside from, at,
below, beneath, beside, between, by, for, from, instead of, into, on,
onto, out of, over, thru (or through), under.

parameterValue is the value of a parameter, which can be any valid expression.

labelForTrueParam is the label for a Boolean parameter whose value is true.
You use this form in With clauses; because the value true is implied by the
word With, you provide only the label, not the value. (For an example of how
to use a With clause, see page 233.) If you use or or a comma instead of and
with the last parameter of a with clause, AppleScript changes the of or the
comma to and during compilation.

labelForFalseParam is the label for a Boolean parameter whose value is false.
You use this form in Without clauses; because the value false is implied
by the word Without, you provide only the label, not the value. If you use
or or a comma instead of and with the last parameter of a without clause,
AppleScript changes the or or the comma to and during compilation.

label is any parameter label used in the definition of the subroutine that is not
among the labels for subroutineParamLabel. You must use the special label
given to specify these parameters. (For an example, see “Examples” later in
this section.)

C H A P T E R 8

Handlers

232 Subroutine Definitions and Calls

If you use or or a comma instead of and with the last parameter of a with
clause, AppleScript changes the or or the comma to and during compiling.

NOTES

A subroutine call must include all the parameters specified in the subroutine
definition. There is no way to specify optional parameters.

When calling a subroutine, you can list any parameter-value pairs except
the direct parameter after the label given, not just the parameters that were
specified that way in the subroutine definition. For example, the following
two calls to the searchFiles subroutine described in the next section are
interchangeable.

searchFiles of {"March Expenses", "April Expenses"} for ¬

"Le Chateau"

searchFiles of {"March Expenses", "April Expenses"} ¬

given for:"Le Chateau"

With the exception of the direct parameter, which must directly follow the
subroutine name, labeled parameters can appear in any order. This includes
parameters listed in Given, With, and Without clauses. Furthermore, you can
include any number of Given, With, and Without clauses in a subroutine call.

Examples of Subroutines With Labeled Parameters 8

This section provides examples of subroutine definitions with labeled
parameters and of calls to those subroutines.

C H A P T E R 8

Handlers

Subroutine Definitions and Calls 233

The following subroutine converts inches to centimeters:

on CentimeterConversion from x

--make sure the parameter is a real number or an integer

if class of x is contained by {integer, real}

return x * 2.54

else

error "The parameter must be a real number or an integer"

end if

end CentimeterConversion

--to call CentimeterConversion:

CentimeterConversion of 36

The following subroutine searches for a specific string in a list of files.

to searchFiles of filesToSearch for theString

--filesToSearch: list of Scriptable Text Editor files

--theString: the string to be searched for

set hits to {}

tell application "Scriptable Text Editor"

repeat with i from 1 to (count items of filesToSearch)

set currentFile to item i of filesToSearch

if contents of document currentFile contains theString

--append currentFile to list of hits

set hits to hits & currentFile

end if

end repeat

return hits

end tell

end searchFiles

--to call searchFiles:

searchFiles of {"March Expenses", "April Expenses", ¬
"May Expenses", "June Expenses"} for "LeChateau"

The specified files must be open for the searchFiles handler to work.

C H A P T E R 8

Handlers

234 Subroutine Definitions and Calls

The following subroutine uses the special label given to define a parameter
with the label rounding. By using verb forms ending with “ing” as labels, you
can often make subroutine calls easier to read.

to findNumbers of numberList above minLimit ¬
given rounding:roundBoolean

set resultList to {}

repeat with i from 1 to (count items of numberList)

set x to item i of numberList

if roundBoolean = true then

copy (x + 0.5) div 1 to x

end if

if x > minLimit then

copy resultList & x to resultList

end if

end repeat

return resultList

end findNumbers

--to call findNumbers:

findNumbers of myList above 3 given rounding:true

Another way to call the findNumbers subroutine is to use a With or Without
clause to specify the value of the rounding parameter. You can use With or
Without clauses to specify parameters whose values are true or false.

--this call is equivalent to the previous example

findNumbers of myList above 3 with rounding

The subroutine parameter labels that can be used without the special label
given allow you considerable flexibility in defining handlers that sound
English-like. For example, here’s a routine that takes any parameter that
can be displayed as a string and displays it in a dialog box:

on rock around the clock

display dialog (clock as string)

end rock

C H A P T E R 8

Handlers

Subroutine Definitions and Calls 235

The statement

rock around the current date

later in the same script displays the current date in a dialog box.

Here’s another example of the use of subroutine parameter labels:

to check for yourNumber from bottom thru top

if bottom ≤ yourNumber and yourNumber ≤ top then
display dialog "Congratulations! You scored."

end if

end check

The statement

check for 8 from 7 thru 10

later in the same script displays the specified dialog box.

Subroutines With Positional Parameters 8

The sections that follow describe the syntax for defining and calling
subroutines with positional parameters. Examples of subroutines that use this
syntax begin on page 238.

Subroutine Definition, Positional Parameters 8

The definition for a subroutine with positional parameters lists the order in
which to list parameters when calling the subroutine and the statements to be
executed when the subroutine is called.

C H A P T E R 8

Handlers

236 Subroutine Definitions and Calls

SYNTAX

(on | to) subroutineName ([paramVariable [, paramVariable]...])

[global variable [, variable]...]
[local variable [, variable]...]
[statement]...

end [subroutineName]

where

subroutineName (an identifier) is the name of the subroutine.

paramVariable (an identifier) is a parameter variable for the actual value of the
parameter. You use this identifier to specify the parameter in the body of the
subroutine.

variable is an identifier for either a global or local variable that can be used in
the handler. The scope of a local variable is the handler. You cannot refer to a
local variable outside the handler. The scope of a global variable can extend to
any other part of the script, including other handlers and script objects. For
detailed information about the scope of local and global variables, see “Scope
of Script Variables and Properties,” which begins on page 252.

statement is any AppleScript statement.

The parentheses that enclose the series of positional parameters in the syntax
definition are a required part of the language. They are shown in bold to
distinguish them from parentheses that show grouping but are not part of the
language. The parentheses must be included even if the subroutine definition
doesn’t include any parameters.

For examples of subroutines with positional parameters, see page 238.

Subroutine Call, Positional Parameters 8

A subroutine call for a subroutine with positional parameters lists the
parameters in the same order as they are specified in the subroutine definition.

C H A P T E R 8

Handlers

Subroutine Definitions and Calls 237

SYNTAX

subroutineName ([parameterValue [, parameterValue]...])

where

subroutineName (an identifier) is the name of the subroutine.

parameterValue is the value of a parameter, which can be any valid expression.
If there are two or more parameters, they must be listed in the same order in
which they were specified in the subroutine definition.

The parentheses that enclose the series of positional parameters are a required
part of the language. They are shown in bold to distinguish them from
parentheses that show grouping but are not part of the language. The
parentheses must be included even if the subroutine definition doesn’t include
any parameters.

NOTES

A subroutine call must include all the parameters specified in the subroutine
definition. There is no way to specify optional parameters.

You can use a subroutine call as a parameter of another subroutine call. Here’s
an example.

minimumValue(2, maximumValue(x, y))

The second parameter of the call to minimumValue is the value from the
subroutine call to maximumValue. (The minimumValue subroutine is defined
in the next section.)

A call to a subroutine with positional parameters can include parameters that
aren’t literals as long as they evaluate to a pattern defined for the subroutine.
Similarly, the properties of a record passed to a subroutine don’t have to be
given in the same order they are given in the subroutine’s declaration, as long
as all the properties required to fit the defined pattern are present. The
examples that follow include subroutines with positional parameters that
define a pattern.

C H A P T E R 8

Handlers

238 Subroutine Definitions and Calls

Examples of Subroutines With Positional Parameters 8

Here is a subroutine that returns the minimum value of a pair of values
followed by an example of how to call the subroutine.

on minimumValue(x, y)

 if x ≤ y then
 return x

 else

 return y

 end if

end minimumValue

minimumValue(21, 40000)

You can also define a subroutine whose positional parameters define a pattern
to match when calling the subroutine. For example, the subroutine that follows
takes a single parameter whose pattern consists of a list of two items in a list.

on point({x, y})

display dialog ("x = " & x & ", y = " & y)

end point

set mypoint to {3, 8}

point(mypoint)

C H A P T E R 8

Handlers

Subroutine Definitions and Calls 239

A parameter pattern can be much more complex than a single list. The handler
in the next example takes two numbers and a record whose properties include
a list of bounds and displays a dialog box summarizing some of that
information:

on hello(a, b, {length:l, bounds:{x, y, w, h}, name:n})

set q to a ÷ b

set response to "Hello " & n & ", you are " & l & ¬

" inches tall and occupy position (" & x & ", " & y & ")."

display dialog response

end hello

set thing to {bounds:{1, 2, 4, 5}, name:"George", length:72}

hello (2, 3, thing)

As you can see from this example, a call to a subroutine with patterned parame-
ters can include parameters that aren’t literals, as long as they evaluate to the
appropriate pattern. Similarly, the properties of a record passed to a subroutine
with patterned parameters don’t have to be given in the same order in which
they are given in the subroutine’s definition, as long as all the properties
required to fit the pattern are present.

The Return Statement 8

A Return statement allows you to stop execution of a handler before all its
statements are executed and to obtain a value. Many of the preceding examples
in this chapter use Return statements.

Return 8

A Return statement exits a handler and returns a value. When AppleScript
executes a Return statement, it stops handler execution and resumes execution

C H A P T E R 8

Handlers

240 Subroutine Definitions and Calls

at the place in the script where the handler was called, using the value returned
as the value of the handler.

SYNTAX

return expression

where

expression is an AppleScript expression. When AppleScript executes a Return
statement, it returns the value of the expression. Expressions are described in
Chapter 6, “Expressions.”

EXAMPLE

To return a value and exit a subroutine, include a Return statement in the body
of the subroutine. For example, the following statement returns the integer 2:

return 2

If you include a Return statement without an expression, AppleScript exits the
subroutine immediately and no value is returned.

NOTES

If a subroutine does not include a Return statement, AppleScript executes the
statements in the subroutine and, after handling the last statement, returns
the value of the last statement in the subroutine. If the last statement does not
return a value, then no value is returned.

When AppleScript has finished executing a subroutine (that is, when it
executes a Return statement or the last statement in the subroutine), it
passes control to the place in the script immediately after the place where
the subroutine was called.

C H A P T E R 8

Handlers

Command Handlers 241

Command Handlers 8

Command handlers are handlers for application commands. They are similar
to subroutine handlers, but instead of defining responses to user-defined
commands, they define responses to application commands, such as Open,
Print, or Move, sent to application objects.

You define command handlers in scripts, but they handle commands that are
sent to application objects. To be useful, scripts that contain command handlers
must be associated with the application objects that receive those commands.
This is called attaching a script to an application object.

Scripts that are attached to objects can change the way those objects respond to
particular commands. Each application determines which, if any, of its objects
can have attached scripts, and how you attach the scripts.

This section describes the syntax for command handler definitions. For
information about recursion in command handlers, see the“Recursive
Subroutines,” which begins on page 225. For information about the scope
of variables and properties in handlers, see “Scope of Script Variables and
Properties,” which begins on page 252.

Command Handler Definition 8

A command handler definition is a set of statements that is executed in
response to an application command. Command handler definitions need
not include all of the possible parameters of the commands they respond to.
If a command handler receives more parameters than are specified in the
command handler definition, it ignores the extra parameters.

C H A P T E R 8

Handlers

242 Command Handlers

SYNTAX

The syntax for a command handler definition is

(on | to) commandName ¬
[[of] directParameterVariable] ¬
[given label:paramVariable [, label:paramVariable]...]

[global variable [, variable]...]
[local variable [, variable]...]
[statement]...

end [commandName]

where

commandName (an identifier) is a command name.

directParameterVariable (an identifier) is a parameter variable for the actual
value of the direct parameter. You use this parameter variable to refer to the
direct parameter in the body of the subroutine. If it is included, directParameter
must be listed immediately after the command name. The word of before
directParameter is optional.

label is the parameter label for one of the parameters of the command being
handled. The label given is optional.

paramVariable (an identifier) is a parameter variable for the actual value of the
parameter. You use this identifier to refer to the parameter in the body of
the handler.

variable is an identifier for either a global or local variable that can be used in
the handler. The scope of a local variable is the handler. You cannot refer to a
local variable outside the handler. The scope of a global variable can extend to
any other part of the script, including other handlers and script objects. For
detailed information about the scope of local and global variables, see “Scope
of Script Variables and Properties,” which begins on page 252.

statement is any AppleScript statement.

NOTES

The statements in a command handler can include a Continue statement,
which passes the command to the application’s default handler for that
command. This allows you to invoke an application’s default behavior for a
command from within a command handler. For more information, see “The
Continue Statement,” which begins on page 277.

C H A P T E R 8

Handlers

Command Handlers for Script Applications 243

Command Handlers for Script Applications 8

Getting Started With AppleScript describes how you can use the Script Editor to
save a script as a script application. A script application is a script that you can
run from the Finder much like any other application. If you save a script as a
stay-open application, it stays open after it runs; if you don’t, it quits right after
it runs.

Every script application can respond to at least two commands: the Run
command and the Open command. Like any other application, a script
application receives a Run command whenever it is launched, and an Open
command whenever another icon is dragged and dropped over its icon.

Stay-open script applications can also receive and handle any other commands.
All stay-open applications receive periodic Idle commands whenever they’re
not responding to other events and Quit commands whenever the user quits
the application.

This section describes handlers for the Run, Open, Idle, and Quit commands. It
also describes how you can call a script application from another script.

Run Handlers 8

All applications that are compatible with System 7 can respond to the Run
command, even if they aren’t scriptable. The Finder sends a Run command to
an application whenever that application is not already running and one of the
following actions occurs:

■ The user double-clicks the application’s icon.

■ The user selects the application’s icon and chooses Open from the File menu.

■ The application’s icon is in the Apple Menu Items folder and the user
chooses it from the Apple menu.

■ The application’s icon is in the Startup Items folder and the user restarts
the computer.

If the application is already running when one of these actions occurs, the
application is activated but no commands are sent to it. If the application isn’t

C H A P T E R 8

Handlers

244 Command Handlers for Script Applications

running, the Finder launches the application and sends it a Run command. The
application responds by performing the actions the user expects when the
application first opens, such as opening an untitled document.

Like any other application, a script application receives a Run command
whenever one of the actions just listed occurs. You can provide a handler for
the Run command in a couple of ways. An implicit Run handler consists of all
statements at the top level of a script except for property declarations, script
object definitions, and other command handlers. An explicit Run handler, like
any other handler, is enclosed within an on...end statement.

For example, the script that follows consists a property declaration, an
increment command, a handler for the increment command, and a Tell
statement. For the Tell statement to work, you have a Scriptable Text Editor
document named Count Log open before you run the script. Each time you run
the script, the value of the property x increases by 1 and the increase is
recorded in the Count Log.

property x : 0

increment()

on increment()

set x to x + 1

display dialog "Count is now " & x & "."

end increment

tell document ¬

"Count Log" of application "Scriptable Text Editor"

set selection to "Count is now " & x & "." & return

end tell

The implicit Run handler for this script consists of the statement increment()
and the Tell statement. If you store this script in a script application and then
double-click the script application’s icon, the Finder sends a Run command
to the script, and the Run command invokes the two statements in the implicit
Run handler.

C H A P T E R 8

Handlers

Command Handlers for Script Applications 245

The script in the preceding example behaves exactly the same way if you
rewrite it with an explicit Run handler, like this:

property x : 0

on run

increment()

tell document ¬

"Count Log" of application "Scriptable Text Editor"

set selection to "Count is now " & x & "." & return

end tell

end run

on increment()

set x to x + 1

display dialog "Count is now " & x & "."

end increment

The Run handlers in the preceding examples respond the same way to a Run
command whether the script is saved as a script application or as a compiled
script. If the script is saved as a compiled script, you can invoke its Run
handler by clicking the Run button in the Script Editor.

Note
A script can’t include both a implicit and an explicit Run
handler. If a script includes both an explicit on run
handler and top level commands that constitute an
implicit Run handler, AppleScript returns an error when
you try to compile the script—that is, when you try to run
it, check its syntax, or attempt to save it. ◆

The implicit Run handler allows a user to execute top-level statements
in a script application by launching it from the Finder. For example, if a
script application whose script consists only of the word

beep

is not already open and a user double-clicks its icon, the script application
launches and (after optionally displaying a startup screen) beeps.

C H A P T E R 8

Handlers

246 Command Handlers for Script Applications

By default, a startup screen appears before the script runs. The user must click
the startup screen’s Run button or press the Return key before the Finder
actually sends the Run command. This allows the user to read the description
of the script before running it. If the Never Show Startup Screen checkbox is
selected in the Script Editor’s Save As dialog box when the script application is
created, the script runs immediately without displaying the startup screen.

You can also send a Run command to a script application from within another
script. For information about how to do this, see “Calling a Script Application”
on page 251.

Open Handlers 8

 All applications that are compatible with System 7 can respond to the Open
command, even if they aren’t scriptable. The Finder sends an Open command
to an application whenever the user drags file, folder, or disk icons over the
application’s icon and releases the mouse button. The Open command is sent
even if the application is already running.

Like any other application, a script application receives an Open command
whenever the user drags file, folder, or disk icons over the application’s icon. If
the script in the script application includes an Open handler, the statements
within the handler run when the application receives the Open command. The
Open handler takes a single parameter; when the handler is called, the value of
that parameter is a list of all the items whose icons were dropped on the script
application’s icon. (Each item in the list is an alias; you can convert it to a
pathname by using as string.)

For example, this Open handler makes a list of the pathnames for all items
dropped on the script application’s icon:

on open names
tell application "Scriptable Text Editor"

make new window
repeat with i in names

set iPath to (i as string)
set selection to iPath & return

end repeat
save front window in file "List of Files"

end tell
end open

C H A P T E R 8

Handlers

Command Handlers for Script Applications 247

Files, folders, or disks are not moved, copied, or affected in any way when their
icons are dragged and dropped over a script application’s icon. The Finder just
gets a list of their identities and sends that list to the script application as the
direct parameter of the Open event. Of course, the script in the script applica-
tion could easily tell the Finder to move, copy, or otherwise manipulate them.

Note
Due to a known limitation of system software, you can’t
drop icons on an icon for a script application that’s stored
on a floppy disk. ◆

You can also run an Open handler by sending a script application the Open
command. For details, see “Calling a Script Application” on page 251.

Handlers for Stay-Open Script Applications 8

By default, a script application that receives a Run or Open command handles
that single command and then quits. This allows it to perform a single task and
get out of your way. In contrast, a stay-open script application (one saved with
the Stay Open checkbox selected in the Script Editor’s Save As dialog box)
stays open after it’s launched.

A stay-open script application can be used for any of these purposes:

■ If you run a script frequently, it runs faster as a stay-open application than it
does if it has to be launched each time.

■ Stay-open script applications can receive and handle other commands in
addition to Run and Open. This allows you to use a script application as a
script server that, when its running, provides a collection of handlers that
can be invoked by any other script.

■ Stay-open script applications can perform periodic actions, even in the
background, as long as the script application is running.

All stay-open applications receive periodic Idle events. If a stay-open script
application includes a handler for the Idle event, it can perform periodic
actions whenever it is not responding to other events. If a stay-open script
application includes a handler for the Quit event, it can perform some action,
such as checking with the user, before quitting.

C H A P T E R 8

Handlers

248 Command Handlers for Script Applications

Idle Handlers 8

If a stay-open script application includes an Idle handler, AppleScript sends the
script application periodic Idle commands whenever it’s not responding to
incoming events. The statements in the handler run periodically (every 30
seconds, by default).

For example, this handler causes a stay-open script application to beep every
30 seconds after it has been launched:

on idle

beep

end idle

To change the rate, return the number of seconds to wait as the result of the
script. For example, this script beeps every 5 seconds:

on idle

beep

return 5

end idle

If an Idle handler returns a positive number, that number becomes the rate (in
seconds) at which the handler is called. If the handler returns a non-numeric
value, the rate is not changed.

Remember that the result returned from a handler is just the result of the last
statement, even if it doesn’t include the word return explicitly. For example,
this handler only gets called every 15 minutes.:

on idle

set x to 30

beep

set x to x * x --the result (900) is returned from

--the handler

end idle

To make sure you’re not changing the idle rate, return 0 at the end of
the handler.

C H A P T E R 8

Handlers

Command Handlers for Script Applications 249

Quit Handlers 8

AppleScript sends a stay-open script application a Quit command whenever
the user chooses the Quit menu command or presses Command-Q while the
application is active. If the script includes a Quit handler, the statements in the
handler are run before the application quits.

A Quit handler can be used to set script properties, tell another application to
do something, display a dialog box, or perform almost any other task. If the
handler includes a continue quit statement, the script application’s default
quit behavior is invoked and it quits. If the Quit handler returns before it
encounters a continue quit statement, the application doesn’t quit.

For example, this handler checks with the user before allowing the application
to quit:

on quit

display dialog "Really quit?" ¬

buttons {"No", "Quit"} default button "Quit"

if the button returned of the result is "Quit" then

continue quit

end if

--if the continue statement isn't encountered, the

--script application doesn't quit.

end quit

▲ W A R N I N G

If AppleScript doesn’t encounter a continue quit
statement while executing an on quit handler, it may
seem impossible to quit the application. For example, if the
handler gets an error before the continue quit
statement, attempting to quit the application just produces
an error alert. As a last resort, use the emergency Quit
command: press Command-Shift-Q or hold down the Shift
key and choose Quit from the File menu. This saves
changes to script properties and quits immediately,
bypassing the Quit handler. ▲

C H A P T E R 8

Handlers

250 Command Handlers for Script Applications

Interrupting a Script Application’s Handlers 8

A stay-open script application handles incoming commands even if it is
already running a handler in response to a previous command. This means that
execution of a handler can be interrupted while another handler is run. Because
script applications are not multitasking, execution of the first handler halts
until the second one finishes.

This can cause problems if both handlers modify the same script property or
global variable or if both attempt to modify an application’s data. For example,
suppose that running a script application named Increment causes it to
increment the property p for several minutes:

property p : 0

on close

set temp to p

set p to 0

return temp

end close

set p to 0

repeat 1000000 times

set p to p + 1

end repeat

If while this script application is running it receives a Close command, the
property p is reset to 0 and the script application begins incrementing p all
over again:

tell application "Increment" to close

AppleScript can’t deal with such interruptions automatically.

C H A P T E R 8

Handlers

Command Handlers for Script Applications 251

Calling a Script Application 8

As previously mentioned, any script can send commands to a script application
just as it can to any other application. However, script applications, like other
applications, sometimes respond to the Run command in ways that you might
not expect.

As explained in the description of the Launch command on page 103,
AppleScript sends an implicit Run command whenever it begins to execute
a Tell statement whose target is an application that is not already open.
This creates problems for a script application that doesn’t stay open.

For example, a script like this won’t run correctly if the target application is a
script application that doesn’t stay open:

tell application "NonStayOpen" to run

Instead, the Tell statement launches the script application and sends it an
implicit Run command. The application handles that Run command.
AppleScript then gets to the explicit Run command in the calling script and
tries to send another run event to the script application. Unfortunately, the
application has already handled its one event and quits without responding
to the second Run command. The calling script waits in vain until it times out,
and then receives an error.

The culprit is the implicit Run command sent by the Tell statement when it
launches the application. To launch a non-stay-open application and run its
script, use a Launch command followed by a Run command, like this:

launch application "NonStayOpen"

run application "NonStayOpen"

The Launch command launches the script application without sending it
an implicit Run command. When the Run command is sent to the script
application, it processes the event, sends back a reply if necessary, and quits.

C H A P T E R 8

Handlers

252 Scope of Script Variables and Properties

Similarly, to launch a non-stay-open application and run its Open Handler, use
a Launch command followed by an Open command, like this:

tell application "NonStayOpen"

launch

open {alias "HardDisk:MyFile", ¬

alias "HardDisk:MyOtherFile"}

end tell

For example, if the Open handler on page 246 were saved as a script application
called “NonStayOpen,” the script in the preceding example would cause the
handler to create a list of the two specified pathnames.

Scope of Script Variables and Properties 8

The declaration of a variable or property identifier is the first valid occurrence
of the identifier in a script. The form and location of the declaration determine
how AppleScript treats the identifier in that script.

The scope of a variable or property declaration is the extent to which
AppleScript recognizes the declared identifier within a script. It is often
convenient to limit the scope of a particular identifier to a single handler—
that is, to treat the identifier as a local variable. After a local variable has
served its purpose, its identifier no longer has any value associated with
it and can be used again for other purposes elsewhere in the script.

If you want the value of a script to persist after a script is run, or if you wish
to use the same identifier in several different places in a script, you can declare
it as either a script property or a global variable. AppleScript keeps track of
properties and global variables across multiple handlers and script objects
within a single script.

This section describes how AppleScript interprets various forms of declarations
within handlers, within script objects, and at the top level of a script. You
should be familiar with the section “Run Handlers,” which begins on page 243,
before you read this section.

C H A P T E R 8

Handlers

Scope of Script Variables and Properties 253

You can declare a property and set its initial value using a statement like this:

property x: 3

The scope of a property declaration can be either a script object or an entire
script. The value set by a property declaration is not reset each time the script
is run; instead, it persists until the script is recompiled.

A global declaration is much the same as a property declaration except that it
doesn’t set an initial value:

global x

The scope of a global variable declaration can be limited to specific handlers or
script objects or can extend throughout an entire script. Like the value of a
property, the value of a global variable is not reset each time a script is run.
However, the value of a global variable must be set by other statements in
the script.

To set the value of any property or variable, use the Set command. (You can
also use the Copy command for this purpose.)

set x to 3

If the variable has not previously been declared, the Set or Copy command
declares it as a local variable. But in some cases it is also necessary to declare
a local variable explicitly.

local x

Like a global declaration, an explicit local declaration doesn’t set an
initial value.

The preceding examples represent the four basic forms for declaring variables
and properties in AppleScript. The sections that follow describe how
AppleScript interprets these four forms of declarations within handlers, within
script objects, and at the top level of a script.

C H A P T E R 8

Handlers

254 Scope of Script Variables and Properties

Scope of Properties and Variables Declared at the Top Level of a Script 8

Figure 8-1 summarizes the scope of properties and variables declared at the top
level of a script. Sample scripts using each form of declaration follow.

Figure 8-1 Scope of property and variable declarations at the top level of a script

The scope of a property declaration at the top level of a script extends to any
subsequent statements anywhere in the script. Here’s an example:

property theCount : 0

increment()

on increment()

set theCount to theCount + 1

display dialog "Count is now " & theCount & "."

end increment

When it encounters the identifier theCount at any level of this script,
AppleScript associates it with the theCount property declared at the top level.

The value of a property persists after the script in which the property is defined
has been run. Thus, the value of theCount in the previous example is 0
the first time the script is run, 1 the next time, and so on. The property’s
current value is saved with the script and is not reset to 0 until the script is
recompiled—that is, modified and then run again, saved, or checked for syntax.

Similarly, the scope of a global variable declaration at the top level of a script
extends to any subsequent statements anywhere in the script. The next

Form of
declaration

property x: 3

global x

set x to 3

local x

Everywhere
in script

Within Run
handler

only

To
top level

of
script

Within Run
handler only

Scope of
declaration

Where AppleScript
looks for x

C H A P T E R 8

Handlers

Scope of Script Variables and Properties 255

example accomplishes the same thing as the previous example, except that it
uses a global variable instead of a property to keep track of the count.

global theCount

increment()

on increment()

try

set theCount to theCount + 1

display dialog "Count is now " & theCount & "."

on error

set theCount to 1

display dialog "Count is now 1."

end try

end increment

When it encounters the identifier theCount at any level of this script,
AppleScript associates it with the theCount variable declared as a global at
the top level of the script. However, because a global variable declaration
doesn’t set the initial value of a property, the script must use a Try statement
to determine whether the value has been previously set. Thus, if you want
the value associated with an identifier to persist, it is often easier to declare
it as a property so that you can declare its initial value at the same time.

If you don’t want the value associated with an identifier to persist after a script
is run but you want to use the same identifier throughout a script, declare a
global variable and use the Set command to set its value each time the script is
run. Here’s an example:

global theCount

set theCount to 0

on increment()

set theCount to theCount + 1

end increment

increment() --result: 1

increment() --result: 2

C H A P T E R 8

Handlers

256 Scope of Script Variables and Properties

Each time the on increment handler is called within the script, the global
variable theCount increases by 1. However, when you run the entire script
again, theCount is reset to 1.

In the absence of a global variable declaration at the top level of a script, the
scope of a variable declaration using the Set command at the top level of a
script is normally restricted to the Run handler for the script. For example, this
script declares two separate theCount variables:

set theCount to 10

on increment()

set theCount to 5

end increment

increment() --result: 5

theCount --result: 10

The scope of the first theCount variable’s declaration, at the top level of the
script, is limited to the Run handler for the script. The scope of the second
theCount declaration, within the on increment handler, is limited to that
handler. AppleScript keeps track of each variable independently.

To associate a variable in a handler or a script object with the same variable
declared at the top level of a script with the Set command, you can use a global
declaration in the handler, as shown in the next example.

set theCount to 0

on increment()

global theCount

set theCount to theCount + 1

end increment

increment() --result: 1

theCount --result: 1

In this case, when AppleScript encounters the theCount variable within the
on increment handler, it looks for a previous mention of theCount not only
within the handler, but also at the top level of the script. However, references

C H A P T E R 8

Handlers

Scope of Script Variables and Properties 257

to theCount in any other handler in the script are local to that handler unless
the handler also explicitly declares theCount as a global. This kind of global
declaration is discussed in more detail in the sections that follow.

To restrict the context of a variable to a script’s Run handler regardless of
subsequent global declarations, you must declare it explicitly as a local
variable, as shown in this example:

local theCount

set theCount to 10

on increment()

global theCount

set theCount to theCount + 2

end increment

increment() --error: "The variable theCount is not defined"

theCount --result: 10

Because the theCount variable in this example is declared as local to the Run
handler, any subsequent attempt to use the same variable as a global results in
an error.

Note
If you declare a variable with the Set command at the top
level of a script or script object and then declare the same
identifier as a property, the declaration with the Set
command overrides the property declaration. For example,
the script

set x to 10

property x: 5

return x

returns 10, not 5. This occurs because AppleScript always
evaluates property declarations at the top level of a script
before it evaluates Set command declarations. ◆

C H A P T E R 8

Handlers

258 Scope of Script Variables and Properties

Scope of Properties and Variables Declared in a Script Object 8

You should be familiar with Chapter 9, “Script Objects,” before you read
this section.

Figure 8-2 summarizes the scope of properties and variables declared at the top
level of a script object. Sample scripts using each form of declaration follow.

Figure 8-2 Scope of property and variable declarations at the top level
of a script object

The scope of a property declaration at the top level of a script object extends to
any subsequent statements in that script object. Here’s an example.

script Joe

property theCount : 0

on increment()

set theCount to theCount + 1

return theCount

end increment

end script

tell Joe to increment() --result: 1

tell Joe to increment() --result: 2

When it encounters the identifier theCount at any level of the script object
Joe, AppleScript associates it with the same identifier declared at the top
level of the script object. The value of the property theCount persists until
you reinitialize the script object by running the script again.

Form of
declaration

property x: 3

global x

set x to 3

local x

Everywhere
in script object

Within script
object's Run
handler only

To top level of
script object

Scope of
declaration

Where AppleScript
looks for x

To top level of
script

Within script
object's Run
handler only

C H A P T E R 8

Handlers

Scope of Script Variables and Properties 259

The scope of a property declaration at the top level of a script object doesn’t
extend beyond the script object. Thus, it is possible to use the same identifier in
different parts of a script to refer to different properties, as this example
demonstrates:.

property theCount : 0
script Joe

property theCount : 0
on increment()

set theCount to theCount + 1
return theCount

end increment
end script

tell Joe to increment() --result: 1
tell Joe to increment() --result: 2
theCount --result: 0

AppleScript keeps track of the property theCount declared at the top level of
the script separately from the property theCount declared within the script
object Joe. Thus, the theCount property declared at the top level of the script
Joe is increased by 1 each time Joe is told to increment, but the theCount
property declared at the top level of the script is not affected.

Like the scope of a property declaration, the scope of a global variable declara-
tion at the top level of a script object extends to any subsequent statements in
that script object. However, as the next example demonstrates, AppleScript also
associates a global variable with the same variable declared at the top level of
the entire script.

set theCount to 0
script Joe
global theCount

on increment()
set theCount to theCount + 1
return theCount

end increment
end script

tell Joe to increment() --result: 1
tell Joe to increment() --result: 2

C H A P T E R 8

Handlers

260 Scope of Script Variables and Properties

The preceding example first sets the value of theCount at the top level of the
script. When AppleScript encounters the theCount variable within the on
increment handler, it first looks for an earlier occurrence within the handler,
then at the top level of the script Joe. When AppleScript encounters the global
declaration for theCount at the top level of script object Joe, it continues
looking at the top level of the script until it finds the original declaration for
theCount. This can’t be done with a property of a script object, because
AppleScript looks no further than the top level of a script object for that script
object’s properties.

Like the value of a script object’s property, the value of a script object’s global
variable persists after the script object has been run, but not after the script
itself has been run. Thus, telling Joe to increment repeatedly in the preceding
example continues to increment the value of theCount, but running the whole
script again sets theCount to 0 again before incrementing it.

The next example demonstrates how you can use a global variable declaration
in a script object to associate a global variable with a property declared at the
top level of a script.

property theCount : 0

script Norah

property theCount : 20

script Joe

global theCount

on increment()

set theCount to theCount + 1

return theCount

end increment

end script

tell Joe to increment()

end script

C H A P T E R 8

Handlers

Scope of Script Variables and Properties 261

run Norah --result: 1

run Norah --result: 2

theCount --result: 2

theCount of Norah --result: 20

This script declares two separate theCount properties: one at the top level of
the script and one at the top level of the script object Norah. Because the script
Joe declares the global variable theCount, AppleScript looks for theCount
at the top level of the script, thus treating Joe’s theCount and theCount at
the top level of the script as the same variable.

If the script object Joe in the preceding example doesn’t declare theCount as
a global variable, AppleScript treats Joe’s theCount and the theCount at the
top level of the script object Norah as the same variable. This leads to quite
different results, as shown in the next example.

property theCount : 0

script Norah

property theCount : 20

script Joe

on increment()

set theCount to theCount + 1

return theCount

end increment

end script

tell Joe to increment()

end script

run Norah --result: 21

run Norah --result: 22

theCount --result: 0

theCount of Norah -- result:22

C H A P T E R 8

Handlers

262 Scope of Script Variables and Properties

The scope of a variable declaration using the Set command at the top level of a
script object is limited to the Run handler:

script Joe

set theCount to 10

on increment()

global theCount

set theCount to theCount + 2

end increment

return theCount

end script

tell Joe to increment()

--error: "The variable theCount is not defined."

run Joe--result: 10

In contrast to the way it treats such a declaration at the top level of a script,
AppleScript treats the theCount variable declared at the top level of the script
object Joe in the preceding example as local to the script object’s Run handler.
Any subsequent attempt to use the same variable as a global results in an error.

Similarly, the scope of an explicit local variable declaration at the top level of a
script object is limited to that script object’s Run handler, even if the same
identifier has been declared as a property at a higher level in the script:

property theCount : 0

script Joe

local theCount

set theCount to 5

on increment()

set theCount to theCount + 1

end increment

end script

run Joe --result: 5

tell Joe to increment() --result: 1

C H A P T E R 8

Handlers

Scope of Script Variables and Properties 263

Scope of Variables Declared in a Handler 8

You can’t declare a property in a handler, although you can refer to a
property declared at the top level of the script or script object to which
the handler belongs.

Figure 8-3 summarizes the scope of variables declared in a handler. Examples
of each form of declaration follow.

Figure 8-3 Scope of variable declarations within a handler

The scope of a global variable declared in a handler is limited to that handler,
although AppleScript looks beyond the handler when it tries to locate an
earlier occurrence of the same variable. Here’s an example.

set theCount to 10

on increment()

global theCount

set theCount to theCount + 2

end increment

increment() --result: 12

theCount --result: 12

When AppleScript encounters the theCount variable within the on
increment handler, it doesn’t restrict its search for a previous occurrence
to that handler but keeps looking until it finds the declaration at the top level
of the script. However, references to theCount in any subsequent handler
in the script are local to that handler unless the handler also explicitly declares
theCount as a global variable.

Form of
declaration

global x

set x to 3

local x

To top level of
script

Scope of
declaration

Where AppleScript
looks for x

Within
handler only

Within
handler

only

C H A P T E R 8

Handlers

264 Scope of Script Variables and Properties

The scope of a variable declaration using the Set command within a handler is
limited to that handler:

script Henry

set theCount to 10

on increment()

set theCount to 5

end increment

return theCount

end script

tell Henry to increment() --result: 5

run Henry --result: 10

The scope of the first declaration of the first theCount variable, at the top level
of the script object Henry, is limited to the Run handler for the script object.
The scope of the second theCount declaration, within the on increment
handler, is limited to that handler. AppleScript keeps track of each variable
independently.

The scope of a local variable declaration in a handler is limited to that handler,
even if the same identifier has been declared as a property at a higher level in
the script:

property theCount : 10

on increment()

local theCount

set theCount to 5

end increment

increment() --result: 5

theCount --result: 10

About Script Objects 265

C H A P T E R 9

Script Objects 9Figure 9-0
Listing 9-0
Table 9-0

Script objects are objects that you define and use in scripts. Like the application
and system objects described earlier in this manual, script objects have
properties and can respond to commands. Unlike application or system objects,
script objects are defined within scripts.

This chapter describes how to define and use script objects. It begins by describ-
ing a simple script object definition and demonstrating how you would send a
command to the resulting script object. Subsequent sections describe in more
detail how to define, send commands to, and initialize script objects.

You can define groups of script objects that share properties and handlers, and
you can extend the behavior of a handler in one script object by calling it from
another script object. The section “Inheritance and Delegation” describes how
this works. If you are familiar with object-oriented design, you may recognize
the techniques described in this section.

The last section, “Using the Copy and Set Commands With Script Objects,”
describes what to expect when you set a variable to a script object or copy a
script object to a variable and how to write a handler that creates copies
of script objects.

About Script Objects 9

Script objects are user-defined objects that combine data (in the form of
properties) and potential actions (in the form of handlers). Script object
definitions are compound statements that can contain collections of properties,
handlers, and other AppleScript statements.

C H A P T E R 9

Script Objects

266 About Script Objects

Here is a simple script object definition:

script John

property HowManyTimes : 0

to sayHello to someone

set HowManyTimes to HowManyTimes + 1

return "Hello " & someone

end sayHello

end script

It defines a script object that can handle the sayHello command. It assigns the
script object to the variable John. The definition includes a handler for the
sayHello command. It also includes a property, called HowManyTimes, that
indicates how many times the sayHello command has been called.

A handler within a script object definition follows the same syntax rules as a
subroutine definition. Unlike a subroutine definition, however, you can group a
handler within a script object definition with properties whose values are
related to the handler’s actions.

After you define a script object, you initialize it by running the script that
contains the script object definition. You can then use a Tell statement to
send commands to the script object. For example, the following statement
sends the sayHello command the script object defined above.

tell John to sayHello to "Herb"

The result is "Hello Herb".

You can manipulate the properties of script objects in the same way you
manipulate the properties of system and application objects. Use the Get
command to get the value of a property and the Set or Copy command to
change the value of a property.

The following statement uses a Get command to get the value of the
HowManyTimes property of script object John.

get HowManyTimes of John

if the result > 10

return "John, aren't you tired of saying hello?"

end if

C H A P T E R 9

Script Objects

Defining Script Objects 267

Defining Script Objects 9

Each script object definition begins with the keyword script, followed by an
optional variable name, and ends with the keyword end (or end script).
The statements in between can be any combination of property definitions,
handler definitions, and other AppleScript statements.

The syntax of a script object definition is

script [scriptObjectVariable]
[(property | prop) propertyLabel : initialValue]...
[handlerDefinition]...
[statement]...

end [script]

where

scriptObjectVariable is a variable identifier. If you include scriptObjectVariable,
AppleScript stores the script object in a variable. You can use the variable
identifier to refer to the script object elsewhere in the script.

propertyLabel is an identifier for a property. Properties are characteristics that
are identified by unique labels. They are similar to instance variables in
object-oriented programming.

initialValue is the value that is assigned to the property each time the script
object is initialized. Script objects are initialized when the scripts or handlers
that contain them are run. initialValue is required in property definitions.

handlerDefinition is a handler for a user-defined or system command. The
handlers within a script object definition determine which commands the script
object can respond to. Script object definitions can include handlers for user-
defined commands (subroutines) or for system or application commands.
Handlers in script objects are similar to methods in object-oriented program-
ming. For a detailed description of the syntax of handler definitions, refer to
Chapter 8, “Handlers.”

statement is any AppleScript statement. Statements other than handler and
property definitions are treated as if they were part of a handler definition
for the Run command; they are executed when a script object receives the
Run command.

C H A P T E R 9

Script Objects

268 Sending Commands to Script Objects

Sending Commands to Script Objects 9

You use Tell statements to send commands to script objects. A Tell statement
sent to a script object is similar to a Tell statement sent to an application, except
that it uses a variable name, instead of a reference, to identify the script object.
For example,

tell John

sayHello to "Herb"

sayHello to "Grace"

end tell

sends two sayHello commands to the script object John. The parameters of
the commands in the Tell statement, if any, must match the parameters defined
in the handler definitions in the script object definition. For example, the
statement

tell John

sayHello ("Herb")

end tell

--results in an error

results in an error message because the handler definition for the sayHello
command (shown earlier in this chapter) defines a labeled parameter, not a
positional parameter.

For a script object to respond to a command within a Tell statement, either the
script object or its parent script object must have a handler for the command. A
parent script object is a script object from which a script object inherits handlers
and properties. (For more information about parent script objects, see
“Inheritance and Delegation” on page 271.)

The one command that any script object can handle, even without an explicitly
defined handler, is the Run command. A handler for the Run command can
consist of all statements at the top level of a script object definition other than
property and handler definitions. If the script object definition contains only

C H A P T E R 9

Script Objects

Initializing Script Objects 269

handler and property definitions, and does not include any additional top-level
statements, the definition may include an explicit Run handler that begins with
on run. If a script object definition includes neither an implicit Run handler
(in the form of top-level statements) nor an explicit Run handler, the Run
command doesn’t do anything. (For more information about Run handlers, see
“Command Handlers for Script Applications,” which begins on page 243.)

For example, the Display Dialog command in the following script object
definition is executed only if you send a Run command to script object John.

script John

property HowManyTimes : 0

to sayHello to someone

set HowManyTimes to HowManyTimes + 1

return "Hello " & someone

end sayHello

display dialog "John received the Run command"

end script

Initializing Script Objects 9

When you define a script object, you define a collection of handlers and
properties. When you run a script containing a script object definition,
AppleScript creates a script object with the properties and handlers listed
in the definition. This is called initializing a script object. A script object
must be initialized before it can respond to commands.

If you include a script object definition at the top level of a script—that is, as
part of the script’s Run handler—AppleScript initializes the script object each
time the script’s Run handler is executed. (For more information about Run
handlers, see page 243.)

Similarly, if you include a script definition in another handler within a script,
AppleScript initializes a script object each time the handler is called. The
parameter variables in the handler definition become local variables of the

C H A P T E R 9

Script Objects

270 Initializing Script Objects

script object. For example, the makePoint handler in the following script
contains a script object definition for the script object point:

on makePoint(x, y)

script point

property xCoordinate:x

property yCoordinate:y

end script

return point

end makePoint

set myPoint to makePoint(10,20)

get xCoordinate of myPoint

get yCoordinate of myPoint

AppleScript initializes the script object point when it executes the makePoint
command. The parameter variables in the makePoint handler, in this case, x
and y, become local variables of the script object point. The initial value of x is
10, and the initial value of y is 20, because those are the parameters of the
makePoint command that initialized the script object.

One way to use script object definitions in handlers is to define constructor
functions, that is, handlers that create script objects. The following script uses
a constructor function to create three script objects.

on makePoint(x, y)

script

property xCoordinate:x

property yCoordinate:y

end script

end makePoint

set PointA to makePoint(10,20)

set PointB to makePoint(100,200)

set PointC to makePoint(1,1)

As in the previous example, you can retrieve the coordinates of the three script
objects using the Get command.

C H A P T E R 9

Script Objects

Inheritance and Delegation 271

Note
The distinction between defining a script object and
initializing a script object is similar to the distinction
between a class and an instance in object-oriented design.
When you define a script object, you define a class of
objects that respond to the same commands. When
AppleScript initializes a script object, it creates an instance
of the class. The script object gets its initial context
(property values and handlers) from the script object
definition, but its context can change as it responds to
commands. ◆

Inheritance and Delegation 9

You can use AppleScript’s inheritance mechanism to define related script
objects in terms of one another. This allows you to share property and handler
definitions among many script objects without repeating the shared definitions.

This section describes

■ how to a define a script object that inherits properties and handlers from
another script object

■ how inheritance works

■ how to use the Continue statement to extend the behavior of an inherited
handler without completely replacing it

Defining Inheritance 9

You define inheritance with the Parent property. A script object that includes a
Parent property inherits the properties and handlers of the script object listed
in the Parent property.

The script object listed in a Parent property definition is called the parent
script object, or parent. A script object that includes a Parent property is
referred to as a child script object, or child. The Parent property is not required.
A script object can have many children, but a child script object can have only
one parent.

C H A P T E R 9

Script Objects

272 Inheritance and Delegation

The syntax for defining a parent script object is

(property | prop) parent : variable

where

variable is a variable that contains the parent script object.

A script object must be initialized before it can be assigned as a parent of
another script object. This means that the definition of the parent script object
(or a command that calls a function that creates the parent script object) must
come before the definition of the child in the same script.

How Inheritance Works 9

To understand how inheritance works, think of a child script object as
containing a hidden copy of each of the handlers and properties inherited from
its parent. If the child does not have its own definition of a property or handler,
it uses the inherited (hidden) property or handler. If the child has its own
definition of a particular property or handler, then it ignores the inherited
property or handler.

Figure 9-1 shows the relationship between a parent script object called John
and a simple child script object called Simple. The figure includes two
versions of the child script object. The version on the left shows the actual
script object definition for the child script Simple. The version on the right
shows how the script object definition would look with the inherited properties
and handlers copied in. The inherited properties and handlers are shown
between dotted lines, to indicate that they aren’t actually a part of the script
object definition for Simple. As you can see, Simple inherits the
HowManyTimes property and the sayHello handler from its parent.

Figure 9-2 shows another parent-child relationship. As in the previous
example, the child script object inherits the HowManyTimes property and the
sayHello handler from its parent, John. But this time, the child script object,
called Rebel, has its own HowManyTimes property, so it doesn’t use the one
inherited from the parent. In the figure, the inherited property that is not used
is crossed out.

C H A P T E R 9

Script Objects

Inheritance and Delegation 273

Figure 9-1 Relationship between a simple child script and its parent

Figure 9-2 Another child-parent relationship

Drawing diagrams like Figure 9-1 and Figure 9-2 can help you understand more
complicated relationships between parent and child script objects. For example,
if you were to guess the result of the following script without sketching a
diagram, you might conclude that the result of the sayHello command is

script John
 property HowManyTimes : 0
 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello
end script

script Simple
 property HowManyTimes : 0
 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello
end script

script Simple
 property parent : John
end script

parent

script John
 property HowManyTimes : 0
 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello
end script

script Rebel
 property HowManyTimes : 0
 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello
 property HowManyTimes : 10
end script

script Rebel
 property parent : John
 property HowManyTimes : 10
end script

parent

C H A P T E R 9

Script Objects

274 Inheritance and Delegation

"Hello Emily". However, the correct result is "Hello Andrew", as you can
see in Figure 9-3.

script X

on sayHello()

return "Hello, " & getName()

end sayHello

on getName()

return "Emily"

end getName

end script

script Y

property parent : X

on getName()

return "Andrew"

end getName

end script

tell Y to sayHello()

Figure 9-3 A more complicated child-parent relationship

script X
 on sayHello()
 return "Hello, " & getName()
 end sayHello
 on getName()
 return "Emily"
 end getName
end script

script Y
 property parent : X
 on getName()
 return "Andrew"
 end getName
end script

parent script Y
 on sayHello()
 return "Hello, " & getName()
 end sayHello
 on getName()
 return "Emily"
 end getName
 on getName()
 return "Andrew"
 end getName
end script

C H A P T E R 9

Script Objects

Inheritance and Delegation 275

Even though script X in Figure 9-3 sends itself the getName command, the
command is intercepted by the child script, which substitutes its own version
of the getName handler. AppleScript always maintains the first target of a
command as the “self” to which inherited commands are sent, redirecting to
the child any inherited commands the parent sends to itself.

The relationship between a parent script object and its child script objects is
dynamic. If the properties of the parent change, so do the inherited properties
of the children. For example, the script object Simple in the following script
inherits its Vegetable property from script object John.

script John

property Vegetable : "Spinach"

end script

script Simple

property parent : John

end script

set Vegetable of John to "Swiss chard"

Vegetable of Simple

--result: "Swiss chard"

When you change the Vegetable property of script object John with the Set
command, you also change the Vegetable property of the child script object
Simple. The result of the last line of the script is "Swiss chard".

Similarly, if a child changes one of its inherited properties, the value of the
parent property changes. For example, the script object JohnSon in the
following script inherits the Vegetable property from script object John.

script John

property Vegetable : "Spinach"

end script

script JohnSon

property parent : John

on changeVegetable()

set my Vegetable to "Zucchini"

end changeVegetable

end script

C H A P T E R 9

Script Objects

276 Inheritance and Delegation

tell JohnSon to changeVegetable()

Vegetable of John

--result: "Zucchini"

When you change the Vegetable property of script object JohnSon to
"Zucchini" with the changeVegetable command, the Vegetable
property of script object John also changes.

The previous example demonstrates an important point about inherited
properties: to refer to an inherited property from within a child script object,
you must use the reserved word my or of me to indicate that the value to
which you’re referring is a property of the current script object. (You can also
use the words of parent to indicate that the value is a property of the parent
script object.) If you don’t, AppleScript assumes the value is a local variable.

For example, if you refer to Vegetable instead of my Vegetable in the
changeVegetable handler in the previous example, the result is "Spinach".

script John

property Vegetable : "Spinach"

end script

script JohnSon

property parent : John

on changeVegetable()

set Vegetable to "Zucchini" (* creates a local variable called

Vegetable; doesn't change value of

the parent's Vegetable property *)

end changeVegetable

end script

tell JohnSon to changeVegetable()

Vegetable of John

--result: "Spinach"

C H A P T E R 9

Script Objects

Inheritance and Delegation 277

The Continue Statement 9

Normally, if a child script object and its parent both have handlers for the same
command, the child uses its own handler. However, the handler in a child
script object can handle a command first, and then use a Continue statement to
call the handler for the same command in the parent.

The use of a Continue statement to call a handler in a parent script object is
called delegation. By delegating commands to a parent script object, a child
can extend the behavior of a handler contained in the parent without having to
repeat the entire handler definition. After the parent handles the command,
AppleScript continues at the place in the child where the Continue statement
was called. Handlers in child script objects that contain Continue statements
are similar to wrapper methods in object-oriented programming.

The syntax of a Continue statement is

continue commandName parameterList

where

commandName is the name of the current command.

parameterList is the list of parameters to be passed with the command. The list
must follow the same format as the parameter definitions in the handler
definition for the command. For handlers with labeled parameters, this means
that the parameter labels must match those in the handler definition. For
handlers with positional parameters, the parameters must appear in the correct
order. You can list actual values or parameter variables. If you list actual values,
those values replace the parameter values that were specified in the original
command. If you list parameter variables, the Continue statement passes the
parameter values that were specified in the original command.

C H A P T E R 9

Script Objects

278 Inheritance and Delegation

The following script includes two script object definitions similar to those
shown in Figure 9-1 on page 273. The first, Elizabeth, works just like the
script John in the figure. The second, ChildOfElizabeth, includes a handler
with a Continue statement that is not included in the child script object
(Simple) shown in the figure.

script Elizabeth

property HowManyTimes : 0

to sayHello to someone

set HowManyTimes to HowManyTimes + 1

return "Hello " & someone

end sayHello

end script

script ChildOfElizabeth

property parent : Elizabeth

on sayHello to someone

if my HowManyTimes > 3 then

return "No, I'm tired of saying hello."

else

continue sayHello to someone

end if

end sayHello

end script

In the preceding example, the handler defined by ChildOfElizabeth for the
sayHello command checks the value of the HowManyTimes property each
time the handler is run. If the value is greater than 3, ChildOfElizabeth
returns a message refusing to say hello. Otherwise, ChildOfElizabeth calls
the sayHello handler in the parent script object (Elizabeth), which returns
the standard hello message. The word someone in the Continue statement is a
parameter variable. It indicates that the parameter received with the original
sayHello command will be passed to the handler in the parent script.

C H A P T E R 9

Script Objects

Inheritance and Delegation 279

Note
The reserved word my in the statement if my
HowManyTimes > 10 in the previous example is required
to indicate that HowManyTimes is a property of the script
object. Without the word my, AppleScript assumes that
HowManyTimes is an undefined local variable. ◆

A Continue statement can change the parameters of a command before
delegating it. For example, suppose the following script object is defined in
the same script as the preceding example. The first Continue statement changes
the direct parameter of the sayHello command from "Bill" to "William".
It does this by specifying the value "William" instead of the parameter
variable someone.

script AnotherChildOfElizabeth

property parent : Elizabeth

on sayHello to someone

if someone = "Bill" then

continue sayHello to "William"

else

continue sayHello to someone

end if

end sayHello

end script

If you override a parent’s handler in this manner, the reserved words me and
my in the parent’s handler no longer refer to the parent, as demonstrated in the
example that follows.

script Hugh

on identify()

me

end identify

end script

C H A P T E R 9

Script Objects

280 Inheritance and Delegation

script Andrea

property parent : Hugh

on identify()

continue identify()

end identify

end script

tell Hugh to identify()

--result: <<script Hugh>>

tell Andrea to identify()

--result: <<script Andrea>>

Using Continue Statements to Pass Commands to Applications 9

Scripting addition commands and application commands sent to script
objects don’t trigger their associated actions until they’re received by the
default target application. This means you can use a handler for such
commands within a script object to modify the way the command works
when sent to that script object.

For example, the handler for the Beep command in the example that follows
modifies the command by displaying a dialog box and allowing the user to
decide whether to continue or not:

script Joe

on beep

set x to display dialog ¬

"Do you really want to hear this awful noise?" ¬

buttons {"Yes", "No"}

if the button returned of x is "Yes" then ¬

continue beep

end beep

end script

tell Joe to beep

C H A P T E R 9

Script Objects

Inheritance and Delegation 281

When AppleScript encounters the Tell statement, it sends a Beep command to
script Joe. The Beep handler causes the default target application (for example,
the Script Editor) to display a dialog box that gives the user a choice about
hearing the alert sound. If the user clicks Yes, the handler uses a Continue
statement to pass the Beep command to the default target application. If the
user clicks No, the target application never receives the Beep command and no
alert sound is heard.

In applications that allow you to attach script objects to application objects, you
can use a handler for an application command in a script object to modify the
way the application responds to the command.

For example, if a drawing application allows you to associate script objects
with geometric shapes such as circles or squares, you could include a handler
like this in a script object associated with a shape in a document:

on move to {x, y}

continue move to {x, item 2 of my position}

end move

Whenever the shape the script object is associated with is named as the target
of a Move command, the on move handler handles the command by modifying
one of the parameters and using the continue statement to pass the command
on to the default parent—that is, the drawing application. The location
specified by {x, item 2 of my position} has the same horizontal
coordinate as the location specified by the original Move command, but
specifies the shape’s original vertical coordinate (item 2 of the circle’s original
position), thus constraining the shape’s motion to a horizontal direction.

The documentation for applications that allow you to associate script objects
with application objects in this manner should provide more information about
how to write handlers for application commands.

The Parent Property and the Current Application 9

The default parent property for any script that doesn’t explicitly declare one is
the default target application—usually, the application that is running the
script, such as the Script Editor. You can use the predefined variable current
application to refer to either the default target application or whatever
application is currently set as a script’s parent property.

C H A P T E R 9

Script Objects

282 Inheritance and Delegation

You can make any application the current application for a script or script
object simply by declaring it as a parent property. Any subsequent command in
the script for which the script doesn’t have a handler is passed to the
application you declare as the parent, and subsequent occurrences of the
constant current application refer to that application.

For example, this script declares the Scriptable Text Editor as its parent
property, then sends commands that close the Scriptable Text Editor’s
frontmost window and return the application’s name:

property parent: application "Scriptable Text Editor"

close front window

tell current application to return my name

In this case, my refers to the current application (Scriptable Text Editor). The
Tell statement is optional; just return the name of me would produce the
same result, because AppleScript sends the command to the Scriptable Text
Editor. If you remove the property declaration from the script, the Script Editor
becomes the current application. When sent to the Script Editor, the Close
command and the Return statement produce errors because the Script Editor
doesn’t understand them.

In the next example, the script Bilbo declares the Scriptable Text Editor as
its parent property and includes a handler that modifies the behavior of
the scripting addition command Display Dialog.

script Bilbo

property parent : application "Scriptable Text Editor"

on display dialog x

tell application "Script Editor" to display dialog ¬

"Scriptable Text Editor has something to say"

continue display dialog x

end display dialog

end script

tell Bilbo to display dialog "Hello"

C H A P T E R 9

Script Objects

Using the Copy and Set Commands With Script Objects 283

Because the script object Bilbo declares the Scriptable Text Editor as its parent
property, the on display dialog handler must use a Tell statement to send
a separate Display Dialog command to the Script Editor. The handler then uses
a Continue statement to pass the original Display Dialog command to the
Scriptable Text Editor, which becomes the frontmost application and uses the
Display Dialog addition to display “Hello”.

Using the Copy and Set Commands With Script Objects 9

The Copy and Set commands both assign values to variables, but they have
different results when the value assigned is a script object. The Copy command
makes a new copy of the script object, and the Set command creates a variable
that shares data with the original script object.

To see how this works, consider the following example, which defines a script
object, called John, with a property called Vegetable.

script John

property Vegetable: "Spinach"

end script

set myScriptObject to John

set Vegetable of John to "Swiss chard"

get Vegetable of myScriptObject

--result: "Swiss chard"

The first Set command defines a variable, called myScriptObject, that shares
data with the original script object John. The second Set command changes the
value of the Vegetable property of script object John from "Spinach" to
"Swiss chard". Because myScriptObject shares data with John, it shares
the change to the Vegetable property of John. When you get the Vegetable
property of myScriptObject, the result is "Swiss chard".

C H A P T E R 9

Script Objects

284 Using the Copy and Set Commands With Script Objects

Now consider the following example, which uses the Copy command to define
the variable myScriptObject.

script John

property Vegetable: "Spinach"

end script

copy John to myScriptObject

set Vegetable of John to "Swiss chard"

get Vegetable of myScriptObject

--result: "Spinach"

In this case, the Copy command creates a new script object. Setting the
Vegetable property of the original script object has no effect on the new script
object. The result of the Get command is "Spinach".

When you copy a child script object to a variable, the variable contains a
complete copy of both the child and its parent, including all the parent’s
properties and handlers. Each new copy, including its inherited properties
and handlers, is completely independent of both the original and any
other copies.

For example, if you copy a modified version of the JohnSon script in this
example to two different variables, you can set each variable’s Vegetable
property independently:

script John

property Vegetable : "Spinach"

end script

script JohnSon

property parent : John

on changeVegetable(x)

set my Vegetable to x

end changeVegetable

end script

C H A P T E R 9

Script Objects

Using the Copy and Set Commands With Script Objects 285

copy JohnSon to J1

copy JohnSon to J2

tell J1 to changeVegetable("Zucchini")

tell J2 to changeVegetable("Swiss chard")

Vegetable of J1

--result: "Zucchini"

Vegetable of J2

--result: "Swiss chard"

Vegetable of John

--result: "Spinach"

You can create handlers that construct copies of script objects for use elsewhere
in a script. For example, the script that follows includes a handler that takes an
initial balance as a parameter and creates a copy of a script object that acts as
an independent account. Each copy includes several properties and an on
deposit handler that enables the script object to increment its own balance
when it receives a Deposit command.

on makeAccount(initialBalance)

script account

property StartDate : current date

property Balance : initialBalance

on deposit(amount)

set Balance to Balance + amount

end deposit

end script

end makeaccount

set a to makeAccount(3300)

set b to makeAccount(33)

C H A P T E R 9

Script Objects

286 Using the Copy and Set Commands With Script Objects

tell a

deposit(30)

deposit(60)

end tell

{Balance of a, StartDate of a}

--result: {3390, date "Tuesday, July 6, 1993 2:38:11 PM"}

{Balance of b, StartDate of b}

--result: {33, date "Tuesday, July 6, 1993 2:38:12 PM"}

Appendixes

Commands 289

A P P E N D I X A

The Language at a Glance A

This appendix summarizes the commands, reference forms, operators, control
statements, and other elements of the AppleScript English dialect. For more
detailed information on these elements, see the appropriate chapters in
this book.

The placeholder descriptions in the last section of this appendix define the
placeholders used in the syntax summaries.

Commands A

A command is a request for action. In AppleScript, you can use applica-
tion commands, which are defined in each application’s dictionary;
AppleScript commands, which are defined and handled by AppleScript;
or scripting addition commands, which are defined and handled by
AppleScript extensions called scripting additions.

Table A-1 lists standard application commands and AppleScript commands.
(For information about scripting addition commands, see the AppleScript
Scripting Additions Guide.) The syntax shown for standard application
commands is the syntax supported by most applications. Individual applica-
tions can extend or change the way the standard application commands work.

For information about how a specific application handles a particular
application command, see the application’s dictionary. For more detailed
descriptions of the commands listed here, see Chapter 4, “Commands.”

Figure A-0
Listing A-0
Table A-0

A P P E N D I X A

The Language at a Glance

290 Commands

T
ab

le
 A

-1
C

om
m

an
d

sy
nt

ax

C
o

m
m

an
d

S
yn

ta
x

R
es

u
lt

c
l
o
s
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

c
l
o
s
e

re
fe

re
nc

eT
oO

bj
ec

t
N

on
e

c
l
o
s
e

re
fe

re
nc

eT
oO

bj
ec

t
s
a
v
i
n
g

i
n

re
fe

re
nc

eT
oF

ile

c
l
o
s
e

re
fe

re
nc

eT
oO

bj
ec

t
s
a
v
i
n
g

sa
ve

O
pt

io
n

c
l
o
s
e

re
fe

re
nc

eT
oO

bj
ec

t
s
a
v
i
n
g

i
n

re
fe

re
nc

eT
oF

ile
¬

s
a
v
i
n
g

sa
ve

O
pt

io
n

c
o
p
y

(A
pp

le
Sc

ri
pt

co
m

m
an

d
)

(

c
o
p
y

|

p
u
t

)

 e
xp

re
ss

io
n
(

t
o

|

i
n
t
o
)

va
ri

ab
le

P
at

te
rn

V
al

ue
 c

op
ie

d

c
o
p
y

(a
pp

lic
at

io
n

co
m

m
an

d
)

(

c
o
p
y

|

p
u
t

)

ex
pr

es
si

on
¬

(

t
o

|

i
n
t
o
)

re
fe

re
nc

eP
at

te
rn

V
al

ue
 c

op
ie

d

(n
on

e
if

 n
o

pa
ra

m
et

er
s

ar
e

in
cl

ud
ed

)
(

c
o
p
y

|

p
u
t

)

(

c
o
p
y

|

p
u
t

)

re
fe

re
nc

eT
oO

bj
ec

t

c
o
u
n
t

(A
pp

le
Sc

ri
pt

co
m

m
an

d
)

c
o
u
n
t

co
m

po
un

dV
al

ue

c
o
u
n
t

[

e
a
c
h

|

e
v
e
r
y

]

cl
as

sN
am

e
(

i
n

|

o
f

)

¬
co

m
po

un
dV

al
ue

In
te

ge
r

n
u
m
b
e
r

o
f

co
m

po
un

dV
al

ue

n
u
m
b
e
r

o
f

 p
lu

ra
lC

la
ss

N
am

e
(

i
n

|

o
f

)

co
m

po
un

dV
al

ue

c
o
u
n
t

(a
pp

lic
at

io
n

co
m

m
an

d
)

c
o
u
n
t

[

e
a
c
h

|

e
v
e
r
y

]

cl
as

sN
am

e

c
o
u
n
t

[

e
a
c
h

|

e
v
e
r
y

]

cl
as

sN
am

e

(

i
n

|

o
f

)

re
fe

re
nc

eT
oO

bj
ec

t]

In
te

ge
r

or

lis
t o

f i
nt

eg
er

s

n
u
m
b
e
r

o
f

cl
as

sN
am

e

n
u
m
b
e
r

o
f

cl
as

sN
am

e
[

(

i
n

|

o
f

)

re
fe

re
nc

eT
oO

bj
ec

t]

co
nt

in
ue

d

A P P E N D I X A

The Language at a Glance

Commands 291

d
a
t
a

s
i
z
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

d
a
t
a

s
i
z
e

o
f

re
fe

re
nc

eT
oO

bj
ec

t
In

te
ge

r
or

lis

t o
f i

nt
eg

er
s

d
a
t
a

s
i
z
e

o
f

re
fe

re
nc

eT
oO

bj
ec

t
a
s

cl
as

sN
am

e

d
e
l
e
t
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

d
e
l
e
t
e

re
fe

re
nc

eT
oO

bj
ec

t
N

on
e

d
u
p
l
i
c
a
t
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

d
u
p
l
i
c
a
t
e

 r
ef

er
en

ce
T

oO
bj

ec
t

R
ef

er
en

ce

d
u
p
l
i
c
a
t
e

 r
ef

er
en

ce
T

oO
bj

ec
t
t
o

re
fe

re
nc

eT
oL

oc
at

io
n

e
r
r
o
r

(A
pp

le
Sc

ri
pt

co
m

m
an

d
)

e
r
r
o
r

¬

[

er
ro

rM
es

sa
ge

]

¬

[

n
u
m
b
e
r

er
ro

rN
um

be
r
]

¬

[

f
r
o
m

of
fe

nd
in

gO
bj

ec
t
]

¬

[

p
a
r
t
i
a
l

r
e
s
u
l
t

re
su

lt
Li

st

]

¬

[

t
o

ex
pe

ct
ed

Ty
pe

]

e
x
i
s
t
s

(a
pp

lic
at

io
n

co
m

m
an

d
)

e
x
i
s
t
s

re
fe

re
nc

eT
oO

bj
ec

t
B

oo
le

an

re
fe

re
nc

eT
oO

bj
ec

t
e
x
i
s
t
s

g
e
t

(A
pp

le
Sc

ri
pt

co
m

m
an

d
)

g
e
t

ex
pr

es
si

on

g
e
t

ex
pr

es
si

on

a
s

cl
as

sN
am

e

V
al

ue
 o

f
ex

pr
es

si
on

g
e
t

(a
pp

lic
at

io
n

co
m

m
an

d
)

g
e
t

re
fe

re
nc

eT
oO

bj
ec

t

g
e
t

re
fe

re
nc

eT
oO

bj
ec

t
a
s

cl
as

sN
am

e

V
al

ue
 o

f
re

fe
re

nc
e

co
nt

in
ue

d

T
ab

le
 A

-1
C

om
m

an
d

sy
nt

ax
 (

co
nt

in
ue

d)

C
o

m
m

an
d

S
yn

ta
x

R
es

u
lt

A P P E N D I X A

The Language at a Glance

292 Commands

l
a
u
n
c
h

(a
pp

lic
at

io
n

co
m

m
an

d
)

l
a
u
n
c
h

l
a
u
n
c
h

re
fe

re
nc

eT
oA

pp
lic

at
io

n

N
on

e

m
a
k
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

m
a
k
e

[
n
e
w
]

cl
as

sN
am

e
a
t

re
fe

re
nc

eT
oL

oc
at

io
n

R
ef

er
en

ce
 to

 th
e

ne
w

 o
bj

ec
t

m
a
k
e

[
n
e
w
]

cl
as

sN
am

e
a
t

re
fe

re
nc

eT
oL

oc
at

io
n

¬

w
i
t
h

p
r
o
p
e
r
t
i
e
s

{

 p
ro

pe
rt

yL
ab

el
:

pr
op

er
ty

V
al

ue
¬

[
,

pr
op

er
ty

La
be

l:
pr

op
er

ty
V

al
ue

]
.
.
.
}

m
a
k
e

[
n
e
w
]

cl
as

sN
am

e
a
t

re
fe

re
nc

eT
oL

oc
at

io
n

¬

w
i
t
h

d
a
t
a

da
ta

V
al

ue

m
a
k
e

[
n
e
w
]

cl
as

sN
am

e
a
t

re
fe

re
nc

eT
oL

oc
at

io
n

¬

w
i
t
h

p
r
o
p
e
r
t
i
e
s

{

pr
op

er
ty

La
be

l:
pr

op
er

ty
V

al
ue

¬

[
,

pr
op

er
ty

La
be

l:
pr

op
er

ty
V

al
ue

]
.
.
.
}

¬

w
i
t
h

d
a
t
a

da
ta

V
al

ue

m
o
v
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

m
o
v
e

re
fe

re
nc

eT
oO

bj
ec

t
t
o

re
fe

re
nc

eT
oL

oc
at

io
n

R
ef

er
en

ce
 to

 th
e

m
ov

ed
 o

bj
ec

t

o
p
e
n

(a
pp

lic
at

io
n

co
m

m
an

d
)

o
p
e
n

re
fe

re
nc

eT
oF

ile
N

on
e

o
p
e
n

lis
tO

fF
ile

s

p
r
i
n
t

(a
pp

lic
at

io
n

co
m

m
an

d
)

p
r
i
n
t

re
fe

re
nc

eT
oO

bj
ec

t
N

on
e

co
nt

in
ue

d

T
ab

le
 A

-1
C

om
m

an
d

sy
nt

ax
 (

co
nt

in
ue

d)

C
o

m
m

an
d

S
yn

ta
x

R
es

u
lt

A P P E N D I X A

The Language at a Glance

Commands 293

q
u
i
t

(a
pp

lic
at

io
n

co
m

m
an

d
)

q
u
i
t

re
fe

re
nc

eT
oA

pp
lic

at
io

n
N

on
e

q
u
i
t

re
fe

re
nc

eT
oA

pp
lic

at
io

n
s
a
v
i
n
g

sa
ve

O
pt

io
n

r
u
n

(A
pp

le
Sc

ri
pt

co
m

m
an

d
)

r
u
n

r
u
n

sc
ri

pt
O

bj
ec

tV
ar

ia
bl

e

T
he

 v
al

ue
, i

f
an

y,
 r

et
ur

ne
d

 b
y

th
e

sc
ri

pt
 o

bj
ec

t

r
u
n

(a
pp

lic
at

io
n

co
m

m
an

d
)

r
u
n

r
u
n

re
fe

re
nc

eT
oA

pp
lic

at
io

n

N
on

e

s
a
v
e

(a
pp

lic
at

io
n

co
m

m
an

d
)

s
a
v
e

re
fe

re
nc

eT
oO

bj
ec

t
N

on
e

s
a
v
e

re
fe

re
nc

eT
oO

bj
ec

t
i
n

re
fe

re
nc

eT
oF

ile

s
e
t

(A
pp

le
Sc

ri
pt

co
m

m
an

d
)

s
e
t

va
ri

ab
le

P
at

te
rn

t
o

ex
pr

es
si

on

ex
pr

es
si

on

r
e
t
u
r
n
i
n
g

va
ri

ab
le

P
at

te
rn

V
al

ue
 a

ss
ig

ne
d

s
e
t

(a
pp

lic
at

io
n

co
m

m
an

d
)

s
e
t

re
fe

re
nc

eP
at

te
rn

t
o

ex
pr

es
si

on

ex
pr

es
si

on

r
e
t
u
r
n
i
n
g

re
fe

re
nc

eP
at

te
rn

V
al

ue
 a

ss
ig

ne
d

T
ab

le
 A

-1
C

om
m

an
d

sy
nt

ax
 (

co
nt

in
ue

d)

C
o

m
m

an
d

S
yn

ta
x

R
es

u
lt

A P P E N D I X A

The Language at a Glance

294 References

References A

A reference is a phrase that specifies an object. Table A-2 summarizes the
reference forms you can use to specify objects in AppleScript. The first
column lists the name of the reference form. The second column lists the
syntax for that form.

When you use references to specify objects, you can specify a series of con-
tainers, each of which is itself a reference, to identify the object uniquely.
Table A-3 lists the ways to specify containers.

For examples and more detailed descriptions of the AppleScript reference
forms, see Chapter 5, “Objects and References.”

Table A-2 Reference form syntax

Reference form Syntax

Arbitrary Element some className

Every Element every className

pluralClassName

Filter referenceToObject whose Boolean

referenceToObject where Boolean

ID className ID IDvalue

Index className integer

className index integer

first className

second className

third className

fourth className

continued

A P P E N D I X A

The Language at a Glance

References 295

fifth className

sixth className

seventh className

eighth className

ninth className

tenth className

integer st className

integer nd className

integer rd className

integer th className

last className

front className

back className

Middle Element middle className

Name className string

className named string

Property propertyLabel

Range every className from reference to reference

pluralClassName from reference to reference

className integer through integer

className integer thru integer

pluralClassName integer through integer

pluralClassName integer thru integer

continued

Table A-2 Reference form syntax (continued)

Reference form Syntax

A P P E N D I X A

The Language at a Glance

296 Operators

Operators A

Table A-4 summarizes the operators in the AppleScript English language
dialect. The first column lists the operators. The second column shows
the syntax for using the operators in expressions. The placeholders in the
syntax descriptions correspond to AppleScript value classes, which are
described briefly in the last section of this appendix, and in more detail in
Chapter 3, “Values.”

Synonyms are listed in groups. The table shows the syntax for the first
operator, but operators that are synonyms follow the same syntax rules.

Relative className before reference

className front of reference

className in front of reference

className after reference

className back of reference

className in back of reference

Table A-3 Container notation in references

Container
notation Syntax

in reference in containerReference

of reference of containerReference

's containerReference's reference

Table A-2 Reference form syntax (continued)

Reference form Syntax

A P P E N D I X A

The Language at a Glance

Operators 297

Table A-4 Operators

Operator Syntax

Arithmetic operators

* number * number

+ number + number
date + number

- number - number
date - number
date – date

÷
/

number (÷ | /) number

^ number ^ number

div number div number

mod number mod number

Logical operators

and Boolean and Boolean

not not Boolean

or Boolean or Boolean

Containment operators

start[s] with
begin[s] with

list starts with list
string starts with string

end[s] with list ends with list
string ends with string

contains list contains list
record contains record
string contains string

does not contain
doesn't contain

list does not contain list
record does not contain record
string does not contain string

continued

A P P E N D I X A

The Language at a Glance

298 Operators

is in
is contained by

list is in list
record is in record
string is in string

is not in
is not contained by
isn't contained by

list is not in list
record is not in record
string is not in string

Comparison operators (equality and inequality)

=
equal
equals
equal to
is
is equal to

expression = expression

≠
does not equal
doesn't equal
is not
is not equal [to]
isn't
isn't equal [to]

expression ≠ expression

Comparison operators (precedence)

<
comes before
is less than
is not greater than or equal [to]
isn't greater than or equal [to]
less than

date < date
integer < integer
real < real
string < string

>
comes after
greater than
is greater than
is not less than or equal [to]
isn't less than or equal [to]

date > date
integer > integer
real > real
string > string

continued

Table A-4 Operators (continued)

Operator Syntax

A P P E N D I X A

The Language at a Glance

Control Statements 299

Control Statements A

Control statements are statements that control when and how other statements
are executed. Table A-5 summarizes the control statements in the AppleScript
English dialect. For more information about control statements, see Chapter 7,
“Control Statements.”

≤
<=
does not come after
doesn't come after
is less than or equal [to]
is not greater than
isn't greater than
less than or equal [to]

date ≤ date
integer ≤ integer
real ≤ real
string ≤ string

≥
>=
does not come before
doesn't come before
greater than or equal [to]
is greater than or equal [to]
is not less than
isn't less than

date ≥ date
integer ≥ integer
real ≥ real
string ≥ string

Miscellaneous operators

& expression & expression

as expression as className

a reference to [a] (ref [to] | reference to) ¬
reference

Table A-4 Operators (continued)

Operator Syntax

A P P E N D I X A

The Language at a Glance

300 Control Statements

Table A-5 Control statements

Control
statement Syntax

tell tell referenceToObject to statement

tell referenceToObject
 [statement]...
end [tell]

if if Boolean then statement

if Boolean [then]
 [statement]...
[else if Boolean [then]
 [statement]...]...
[else
 [statement]...]
end [if]

repeat repeat
 [statement]...
end [repeat]

repeat integer [times]
 [statement]...
end [repeat]

repeat while Boolean
 [statement]...
end [repeat]

repeat until Boolean
 [statement]...
end [repeat]

repeat with variable from integer to integer [by integer]
 [statement]...
end [repeat]

repeat with variable in list
 [statement]...
end [repeat]

exit exit

continued

A P P E N D I X A

The Language at a Glance

Handlers 301

Handlers A

Handlers are collections of statements that are executed in response to
commands or error messages. Table A-6 summarizes handler definitions
and subroutine calls.

try try
 [statement]...
on error ¬
 [errorMessageVariable] ¬
 [number errorNumberVariable] ¬
 [from offendingObjectVariable] ¬
 [partial result resultListVariable] ¬
 [to expectedTypeVariable]
 [global variable [, variable]...]
 [local variable [, variable]...]
 [statement]...
end [error | try]

considering considering attribute [, attribute ... and attribute] ¬
 [but ignoring attribute [, attribute ... and attribute]]
 [statement]...
end considering

ignoring ignoring attribute [, attribute ... and attribute] ¬
 [but considering attribute [, attribute ... and attribute]]
 [statement]...
end ignoring

with timeout with timeout [of] integer second[s]
 [statement]...
end [timeout]

with
transaction

with transaction [session]
 [statement]...
end [transaction]

Table A-5 Control statements (continued)

Control
statement Syntax

A P P E N D I X A

The Language at a Glance

302 Handlers

T
ab

le
 A

-6
H

an
dl

er
 d

efi
ni

tio
ns

 a
nd

 c
al

ls

H
an

d
le

r
S

yn
ta

x

Su
br

ou
ti

ne
 d

efi
ni

ti
on

(l

ab
el

ed
 p

ar
am

et
er

s)
(

o
n

|

t
o

)

su
br

ou
ti

ne
N

am
e

¬

[

o
f

|

i
n

di
re

ct
P

ar
am

et
er

V
ar

ia
bl

e
]

¬

[

su
br

ou
ti

ne
P

ar
am

La
be

l
pa

ra
m

V
ar

ia
bl

e
]

.
.
.

¬

[

g
i
v
e
n

la
be

l:
pa

ra
m

V
ar

ia
bl

e
[
,

la
be

l:
pa

ra
m

V
ar

ia
bl

e
]
.
.
.
]

[

g
l
o
b
a
l

va
ri

ab
le

[
,

va
ri

ab
le

]
.
.
.
]

[

l
o
c
a
l

va
ri

ab
le

[
,

va
ri

ab
le

]
.
.
.
]

[

st
at

em
en

t
]
.
.
.

e
n
d

[

su
br

ou
ti

ne
N

am
e
]

Su
br

ou
ti

ne
 c

al
l (

la
be

le
d

pa

ra
m

et
er

s)
su

br
ou

ti
ne

N
am

e
¬

[

(

o
f

|

i
n

)

di
re

ct
P

ar
am

et
er

]

¬

[

su
br

ou
ti

ne
P

ar
am

La
be

l
pa

ra
m

et
er

V
al

ue

]

¬

|

[

w
i
t
h

la
be

lF
or

T
ru

eP
ar

am

[
,

la
be

lF
or

T
ru

eP
ar

am

]
.
.
.

¬

[
(

a
n
d

|

o
r

|

,

)

la
be

lF
or

T
ru

eP
ar

am

]

]

¬

|

[

w
i
t
h
o
u
t

la
be

lF
or

Fa
ls

eP
ar

am

[
,

la
be

lF
or

Fa
ls

eP
ar

am

]
.
.
.

¬

[
(

a
n
d

|

o
r

|

,

)

la
be

lF
or

Fa
ls

eP
ar

am

]

]

¬

|

[

g
i
v
e
n

la
be

l:
pa

ra
m

et
er

V
al

ue
¬

[
,

la
be

l:
pa

ra
m

et
er

V
al

ue

]
.
.
.
]

]
 .
.
.

Su
br

ou
ti

ne
 d

efi
ni

ti
on

(p

os
it

io
na

l p
ar

am
et

er
s)

(

o
n

|

t
o

)

su
br

ou
ti

ne
N

am
e
(

[

 p
ar

am
V

ar
ia

bl
e
[
,

pa
ra

m
V

ar
ia

bl
e
]
.
.
.
]
)

[

g
l
o
b
a
l

va
ri

ab
le

[
,

va
ri

ab
le

]
.
.
.
]

[

l
o
c
a
l

va
ri

ab
le

[
,

va
ri

ab
le

]
.
.
.
]

[

st
at

em
en

t
]
.
.
.

e
n
d

[

su
br

ou
ti

ne
N

am
e
]

Su
br

ou
ti

ne
 c

al
l

(p
os

it
io

na
l p

ar
am

et
er

s)
su

br
ou

ti
ne

N
am

e
(

[

pa
ra

m
et

er
V

al
ue

[
,

pa
ra

m
et

er
V

al
ue

]
.
.
.
]

)

R
et

ur
n

st
at

em
en

t
r
e
t
u
r
n

ex
pr

es
si

on

C
om

m
an

d
 h

an
d

le
r

d
efi

ni
ti

on
(

o
n

|

t
o

)

co
m

m
an

dN
am

e
¬

[

[

o
f

]

di
re

ct
P

ar
am

et
er

V
ar

ia
bl

e
]

¬

[

[

g
i
v
e
n

]

la
be

l:
pa

ra
m

V
ar

ia
bl

e
[
,

la
be

l:
pa

ra
m

V
ar

ia
bl

e
]
.
.
.
]

[

g
l
o
b
a
l

va
ri

ab
le

[
,

va
ri

ab
le

]
.
.
.
]

[

l
o
c
a
l

va
ri

ab
le

[
,

va
ri

ab
le

]
.
.
.
]

[

st
at

em
en

t
]
.
.
.

e
n
d

[

co
m

m
an

dN
am

e
]

A P P E N D I X A

The Language at a Glance

Script Objects 303

Script Objects A

Script objects are user-defined objects. Table A-7 summarizes the syntax for
defining script objects in AppleScript. For more information about script
objects, see Chapter 9, “Script Objects.”

Variable and Property Assignments and Declarations A

Table A-8 summarizes the syntax for assigning values to variables and script
properties and declaring local and global variables. For information about
variables and script properties, see Chapter 3, “Values.” For detailed
information about the scope of script variables and properties, see “Scope of
Script Variables and Properties,” which begins on page 252.

Table A-7 Script objects

Script object element Syntax

Script object
definition

script [scriptObjectVariable]
 [(property | prop) propertyLabel : expression]...
 [handlerDefinition]...
 [statement]...
end [script]

Continue statement
(to pass a command
to a handler in the
parent script object)

continue commandStatement

A P P E N D I X A

The Language at a Glance

304 Predefined Variables

The Text Item Delimiters property, which is the only property you can get and
set using the global variable AppleScript, consists of a list of the delimiters
used by AppleScript when coercing lists to strings and when getting text items
from strings. This property is declared by AppleScript and is available from
any script. You can get and set it using this syntax:

AppleScript's text item delimiters

text item delimiters of AppleScript

Currently, only the first delimiter in the list is used by AppleScript.

Predefined Variables A

Table A-9 lists special variables that are defined by AppleScript. These variables
are global, that is, they are available anywhere in a script.

As with all other identifiers, predefined variables are not case sensitive. For
example, result, Result, and RESULT are all treated as the same variable.

Table A-8 Assignments and declarations

Assignment or declaration Syntax

Variable assignment
(and declaration if variable
has not previously been
declared)

copy expression to variable

copy reference to variable

set variable to expression

set variable to reference

Global variable declaration global variable [, variable]...

Local variable declaration local variable [, variable]...

Script property declaration
and assignment

property propertyLabel : expression

prop propertyLabel : expression

A P P E N D I X A

The Language at a Glance

Constants 305

Constants A

Table A-10 lists constants defined by AppleScript.

As with all other identifiers, constants are not case sensitive. For example,
false, False, and FALSE are all treated as the same constant.

Table A-9 Predefined variables

Identifier Class Description

it Reference The default target. For more information, see
Chapter 7, “Control Statements.”

me Reference The current script (used within Tell statements to
refer to handlers or properties of the current script).
For more information, see Chapter 7, “Control
Statements,” and Chapter 8, “Handlers.”

pi Real The value π (roughly 3.14159).

result Any class The result returned by the most recently executed
command or the most recently evaluated expres-
sion. If the most recently executed command did
not return a result, then the value of result is
undefined.

return String A return character.

space String A space character.

tab String A tab character.

Table A-10 Constants defined by AppleScript

Identifier Meaning

Attributes specified in Considering and Ignoring statements

application
responses

If ignored, AppleScript doesn’t wait for responses from
application commands before proceeding to the next
statement in a script and ignores any results or errors
returned.

continued

A P P E N D I X A

The Language at a Glance

306 Constants

case If considered, AppleScript distinguishes uppercase letters
from lowercase.

diacriticals If ignored, AppleScript ignores diacritical marks in
string comparisons.

expansion If ignored, AppleScript treats the characters æ, Æ, œ, and
Œ as single characters and thus not equal to the character
pairs ae, AE, oe, and OE.

hyphens If ignored, AppleScript ignores hyphens in string
comparisons

punctuation If ignored, AppleScript ignores punctuation marks in
string comparisons.

white space If ignored, AppleScript ignores spaces, tab characters,
and return characters in string comparisons.

Text styles

all caps All caps

all lowercase All lowercase

bold Boldface

condensed Condensed

expanded Expanded

hidden Hidden

italic Italic

outline Outline

plain Plain text

shadow Shadow

small caps Small caps

strikethrough Strikethrough

subscript Subscript

continued

Table A-10 Constants defined by AppleScript (continued)

Identifier Meaning

A P P E N D I X A

The Language at a Glance

Placeholders 307

Placeholders A

Table A-11 explains the placeholders used in the syntax descriptions in
this appendix.

superscript Superscript

underline Underline

Save options

ask Ask user whether to save modified object or objects.

no Don’t save modified object or objects.

yes Save modified object or objects.

Alignment

center Centered

full Justified

left Flush left

right Flush right

Boolean constants

false The Boolean false value.

true The Boolean true value.

Miscellaneous

current
application

Either the default target application or whatever
application is currently set as a script’s parent property.

Table A-10 Constants defined by AppleScript (continued)

Identifier Meaning

A P P E N D I X A

The Language at a Glance

308 Placeholders

Table A-11 Placeholders used in syntax descriptions

Placeholder Explanation

applicationName A string containing the name of the application as it would be
listed in the Application menu, or a string of the form
"Disk:Folder1:Folder2:...:ApplicationName" that specifies where
the application is stored. For more information, see page 146.

attribute An attribute, identified by a constant, that can be considered
or ignored in a Considering or Ignoring control statement.
The constants for attributes are case, white space,
diacriticals, hyphens, expansion, punctuation, and
application responses.

Boolean An expression that evaluates to true or false. (Boolean is an
AppleScript value class. For more information about Boolean
values, see page 41.)

className A class identifier or an expression that evaluates to an object
class identifier.

commandName An identifier (name) for a command.

commandStatement A statement, consisting of a command with either parameter
values or formal parameters, to be passed to a parent script object.

compoundValue An expression that evaluates to a compound value (a list, record,
or string).

containerReference A reference that specifies a container for another object.

dataValue An expression that evaluates to a value of the appropriate class for
the object being created.

date An expression that evaluates to a date. (Date is an AppleScript
value class. For more information about dates, see page 44.)

directParameter The direct parameter of a subroutine definition.

directParameterVariable A parameter variable used as a placeholder for the value of the
direct parameter in a subroutine definition.

errorMessage An expression, usually a string, that describes an error.

errorMessageVariable A parameter variable for the expression that describes the error.

errorNumber The error number for the error.

continued

A P P E N D I X A

The Language at a Glance

Placeholders 309

errorNumberVariable A parameter variable for the error number.

expectedType A class identifier for the value class to which AppleScript was
attempting to coerce a value when an error occurred.

expectedTypeVariable A parameter variable for the value class to which AppleScript was
attempting to coerce a value when an error occurred.

expression A series of AppleScript words whose value is a Boolean, class
identifier, constant, data, date, integer, list, real, record, reference,
or string.

handlerDefinition A command or subroutine handler definition.

IDvalue An expression that evaluates to an object’s ID property. For most
objects, the ID property is an integer.

integer An expression that evaluates to an integer. (Integer is an
AppleScript value class. For more information about integers,
see page 48.)

label An identifier for a parameter.

labelForFalseParam An identifier for a Boolean parameter whose value is false.

labelForTrueParam An identifier for a Boolean parameter whose value is true.

list An expression that evaluates to a list.

listOfFiles A list of references, each of which has the form file
"Disk:Folder1:Folder2:...:Filename" or alias
"Disk:Folder1:Folder2:...:Filename" and specifies a file.
For more information , see page 144.

nameString A string of the form "Disk:Folder1:Folder2:...:FileName" that
specifies where a file is stored. For more information, see page 144.

number An expression that evaluates to an integer or real number.

offendingObject A reference to an object that caused an error.

offendingObjectVariable A parameter variable for the reference to the object that caused
an error.

parameterValue An expression that evaluates to a value of a parameter.

continued

Table A-11 Placeholders used in syntax descriptions (continued)

Placeholder Explanation

A P P E N D I X A

The Language at a Glance

310 Placeholders

paramVariable A parameter variable (also known as a formal parameter) used as a
placeholder for the value of a parameter in a handler definition.

pluralClassName A plural class identifier or an expression that evaluates to a plural
class identifier.

propertyLabel The identifier for a property of an object, or an expression that
evaluates to the identifier for a property of an object.

propertyValue An expression that evaluates to a value of the appropriate class for
the property being defined.

real An expression that evaluates to a real number. (Real is an
AppleScript value class. For more information about real numbers,
see page 54.)

record An expression that evaluates to a record. (Record is an AppleScript
value class. For more information about records, see page 55.)

reference A reference that specifies an object or location. (For more
information about references, see Chapter 5, “Objects and
References.”)

referencePattern A reference, a list of reference patterns, or a record of
reference patterns.

referenceToApplication A reference of the form application "Disk:Folder1:Folder2:
...:ApplicationName" that specifies an application. For more
information, see page 146.

referenceToFile A reference of the form file "Disk:Folder1:Folder2:...:
Filename" or alias "Disk:Folder1:Folder2:...:Filename" that
specifies a file. For more information , see page 144.

referenceToLocation A reference that specifies a location. (For more information about
locations, see “Parameters That Specify Locations” on page 80.)

referenceToObject A reference that specifies an object or objects. (For more
information about references, see Chapter 5, “Objects and
References.”)

resultList List of results for objects that were handled before an error
occurred.

continued

Table A-11 Placeholders used in syntax descriptions (continued)

Placeholder Explanation

A P P E N D I X A

The Language at a Glance

Placeholders 311

resultListVariable A parameter variable for a list of results for objects that were
handled before an error occurred.

saveOption A constant (yes, no, or ask) that specifies whether to save an
object that has been modified before closing it.

scriptObjectVariable A variable whose value is a script object. (For more information
about script objects, see Chapter 9, “Script Objects.”)

session An object that specifies a specific session.

statement An AppleScript statement.

string An expression that evaluates to a string. (String is an AppleScript
value class. For more information about strings, see page 61.)

subroutineName An identifier (name) for a subroutine.

subroutineParamLabel Any of the following labels: above, against, apart from,
around, aside from, at, below, beneath, beside, between,
by, for, from, instead of, into, on, onto, out of, over,
thru (or through), under.

timeDifference An integer specifying a time difference in seconds.

variable A variable (a user-defined identifier that represents a value).

variablePattern A variable, a list of variable patterns, or a record of
variable patterns.

Table A-11 Placeholders used in syntax descriptions (continued)

Placeholder Explanation

About Text Objects 313

A P P E N D I X B

Scriptable Text Editor Dictionary B

This appendix defines the AppleScript terms understood by the Scriptable Text
Editor, the application used in examples throughout this book. These include
both the names of application objects in the Scriptable Text Editor or its
documents and the names of commands that specify actions that the Scriptable
Text Editor performs. The appendix contains these sections:

■ About Text Objects

■ Scriptable Text Editor Object Class Definitions

■ Scriptable Text Editor Commands

■ Scriptable Text Editor Errors

For general information about definitions provided by scriptable applications,
see “Commands and Objects” on page 17. For definitions of the terms under-
stood by other scriptable applications, see the documentation for those
applications.

About Text Objects B

The Scriptable Text Editor deals mainly with text; therefore, most of its objects
are text objects. The Scriptable Text Editor defines five text object classes:

■ Character

■ Word

■ Paragraph

■ Text

■ Text Item

The following sections describe characteristics that these objects have in
common. To avoid ambiguity, objects that belong to the class Text are always
referred to as “objects of class Text.” Objects that belong to the character,
word, paragraph, text, or text item classes are called “text objects.”

Figure B-0
Listing B-0
Table B-0

A P P E N D I X B

Scriptable Text Editor Dictionary

314 About Text Objects

Elements of Text Objects B

Each of the text object classes can contain any of the other text object classes as
elements. For example, a word can also be a paragraph. A word object can
contain character, word, and text item elements.

Classes of text objects are distinguished from each other by the way their
boundaries, or delimiters, are defined. Because of this, the same text can be
viewed as a collection of character elements, word elements, paragraph
elements, or text item elements.

In addition to paragraph, word, character, and text item elements, all text
objects can contain elements that belong to the class Text. An object belonging
to class text is a series of contiguous characters. In any text object, the elements
of class text are all of the possible series of contiguous characters contained
within the object. The most common way to use an element of class Text is to
specify the contiguous characters in a range of text objects.

For example, the following reference specifies all the characters, including
spaces, from the beginning of the fifth word to the end of the twenty-fifth word.

text from word 5 to word 25

In contrast, the following reference specifies a list of words, with no information
about spaces or punctuation between words.

word 5 thru 25

Special Properties of Scriptable Text Editor Text Objects B

Like most scriptable applications, the Scriptable Text Editor supports standard
groups, or suites, of AppleScript objects and commands. Different applications
of the same type have many of the same objects and commands in their
dictionaries. For example, most text-processing applications have paragraph
objects, word objects, character objects, text item objects, and objects of class
text. For the most part, these objects have the same properties in different
applications.

Sometimes scriptable applications add properties to standard objects that are
not included in the standard suites. In the Scriptable Text Editor, each of the

A P P E N D I X B

Scriptable Text Editor Dictionary

About Text Objects 315

text object classes—paragraph, word, character, text item, and text—includes
the following special properties:

■ The Length property specifies the number of characters in the object.

■ The Offset property specifies the offset, in characters, from the beginning of
a Scriptable Text Editor document to the first character of the text object. For
example, if a document begins with the words “We the people”, the offset of
the word “We” is 1 and the offset of the word “people” is 8.

Text Styles B

The text styles of Scriptable Text Editor text objects are defined by two
properties: Style and Uniform Styles:

■ The Style property specifies the styles of the text object. If the styles vary
within the object, the Style property specifies the style of the first character
of the object.

■ The Uniform Styles property specifies the styles that are the same for all the
characters in the text object.

The value of a Style or Uniform Styles property is a record with two properties:
On Styles and Off Styles. The On Styles property specifies styles that are “on,”
that is, that apply to the text object. The Off Styles property specifies styles that
are “off,” that is, that do not apply to the text object. Both On Styles and Off
Styles are lists of constants that specify text styles. For the Scriptable Text
Editor, these constants are bold, italic, outline, underline, and shadow.

The following example shows the value of a Style property for a text object
whose characters are bold and underlined:

{On Styles:{bold, underline}, Off Styles:{italic, outline, shadow}}

The On Styles property lists the two styles (bold and underline) that apply
to the text object, while the Off Styles property lists the styles that do not apply
to the text object. Together, the On Styles and Off Styles properties of a Style
property include all of the text styles that the Scriptable Text Editor supports.

The Uniform Styles property specifies the styles that are uniform throughout a
text object, that is, that are the same for every character in a text object. The On
Styles property specifies the styles that apply to every character in the object.
The Off Styles property specifies styles that do not apply to any character in the

A P P E N D I X B

Scriptable Text Editor Dictionary

316 About Text Objects

text object. If any of the style constants (bold, italic, outline, underline,
and shadow) do not appear in either field, it is because the styles apply to
some, but not all, of the characters in the object.

The following example shows the value of a Uniform Styles property for a
text object in which every character is bold and no characters are outlined
or shadowed:

{On Styles:{bold}, Off Styles:{outline, shadow}}

The fact that the italic and underline constants do not appear in either
field means that at least one, but not all, of the characters in the object are
italicized and underlined. To find out which characters are italicized or
underlined, you must examine the Style properties of each character in the
text object.

To set the styles of a text object, use a Copy or Set command to set the Style
property of the text object to one of the following:

■ a two-part record like the one described earlier for the value of a
Style property

■ a one-part record that specifies either On Styles or Off Styles

■ a list specifying the On Styles

■ a constant specifying a single style

For example, here are four ways to use the Set command to set text styles:

set the style of word 1 to {On Styles:{italic}, ¬
Off Styles:{bold, shadow}}

set the style of word 1 to {On Styles:{italic, bold}}

set the style of word 1 to {bold, italic}

set the style of word 1 to italic

■ In the first example, the styles specified in the On Styles property are added
to the active styles of word 1. The styles specified in the Off Styles property
are removed from the active styles of word 1. Styles that are not specified in
either property remain the same. For example, if word 1 is originally

A P P E N D I X B

Scriptable Text Editor Dictionary

About Text Objects 317

underlined, shadowed, and bold, then after the Set command, word 1 is
underlined and italicized.

■ In the second example, the styles specified in the On Styles property are
added to the active styles of word 1. Styles that are not specified remain the
same. For example, if word 1 is originally underlined and shadowed, then
after the Set command, word 1 is italicized, underlined, shadowed, and bold.

■ In the third example, the styles specified in the list are added to the active
styles of word 1. Styles that are not specified remain the same. For example,
if word 1 is originally underlined and shadowed, then after the Set
command, word 1 is italicized, underlined, shadowed, and bold.

■ In the fourth example, the style specified in the command is added to the
active styles of word 1. All other styles remain the same. For example, if
word 1 is originally underlined, shadowed, and bold, then after the Set
command, word 1 is italicized, underlined, shadowed, and bold.

When you set the style of a text object, if you include the same style constant in
both the On Styles property and the Off Styles property, the Scriptable Text
Editor returns the error Bad data.

When setting text styles, you can use a special constant—plain—to specify
that the text object is to be plain, that is, have no text styles. If you include
constants other than plain in the On Styles property, the Scriptable Text Editor
ignores the other constants. If you include plain in the Off Styles property, the
Scriptable Text Editor returns the error Bad data.

AppleScript and Non-Roman Script Systems B

A script system is a collection of system software facilities that allow for the
visual representation of a particular writing system. Script systems include
Roman, Japanese, Hebrew, Greek, and Thai. Each script system has a corre-
sponding script code, a constant used, for example, to identify the script
system in which some text was prepared. AppleScript and the Scriptable Text
Editor can handle text prepared in a variety of script systems, provided the
appropriate software is installed on your computer.

A character in an AppleScript string or a Scriptable Text Editor document takes
up either 1 byte or 2 bytes, depending on the script system the character
belongs to. Thus, the size in bytes of a text object may differ from the number
of characters it contains.

A P P E N D I X B

Scriptable Text Editor Dictionary

318 Scriptable Text Editor Object Class Definitions

AppleScript honors the script codes of characters as much as possible when
comparing them. This means that characters from different script systems may
represent different characters and may be of unequal length even though their
character codes are the same.

Scriptable Text Editor Object Class Definitions B

This section defines the application object classes to which Scriptable Text
Editor objects belong. For an introduction to application objects and references,
see Chapter 5, “Objects and References.”

Application B

The Application object class defines the characteristics of the Scriptable Text
Editor application.

PROPERTIES

Clipboard Information stored in the Clipboard. The Clipboard is an area in
the computer’s memory that functions as a holding place for
information that is cut or copied. The Scriptable Text Editor uses
the Clipboard that is shared by all applications.
Class: List of data objects (see “Notes” later in this section)
Modifiable? Yes

Frontmost A Boolean parameter that indicates if the application is the
active application. If the value is true, the Scriptable Text
Editor is the active application. If the value is false, the
Scriptable Text Editor is not the active application.
Class: Boolean
Modifiable? No

Name The name of the application.
Class: String
Modifiable? No

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 319

Selection The current selection. The object or objects in the selection are
the ones that would be cut by a Cut command or copied by a
Copy command. If no objects are selected, the value of this
property is a reference to an insertion point object.
Class: Reference
Modifiable? Yes

Text Item Delimiters
The characters that are used to separate text item objects. By
default, the value of this property is a single comma, {","} (see
“Notes”).
Class: List of text objects
Modifiable? Yes

Version The version of the Scriptable Text Editor.
Class: String
Modifiable? No

ELEMENT CLASSES

document Scriptable Text Editor documents that are currently open (see
“Notes”).

window Scriptable Text Editor windows that are currently open (see
“Notes”).

COMMANDS HANDLED

Open, Print, Quit, Run

DEFAULT VALUE CLASS RETURNED

None

EXAMPLES

tell application "Scriptable Text Editor" to quit

cut the selection of application "Scriptable Text Editor"

A P P E N D I X B

Scriptable Text Editor Dictionary

320 Scriptable Text Editor Object Class Definitions

NOTES

The AppleScript English language dialect supports the abbreviation app for
referring to objects of class application. For example, the following statements
are equivalent:

cut the selection of application "Scriptable Text Editor"

cut the selection of app "Scriptable Text Editor"

The window and document element classes can be used interchangeably. This
is because each open document has a window, whose elements and properties
are always the same as those of its document. For example, if the first open
document is named Giant, the first window is also named Giant. A Scriptable
Text Editor document and its window contain the same text elements, so
references to text elements in a document and its window can be used
interchangeably. For example, word 1 of document "Giant" and word
1 of window "Giant" refer to the same word.

Text item objects are series of contiguous characters that are separated from
each other by special characters called delimiters. The Text Item Delimiters
property of the Scriptable Text Editor application consists of a list of characters
that can be used to separate text item objects. At startup the default value of the
Scriptable Text Editor’s Text Item Delimiters property is a single-item list that
contains a comma: {","}. You can set this delimiter to a different value or add
additional delimiters, but the new values are lost when the user quits the
application. You may find it convenient to alter the Text Item Delimiters
property temporarily if you are dealing with multilingual text or text formatted
with other delimiters.

The Clipboard property is a list of objects of class Data, but you can use the
As operator to get the Clipboard as a string, reference, or styled text. The
Scriptable Text Editor coerces the data to the requested type, if possible.

tell application "Scriptable Text Editor"

cut word 1 of front document

get clipboard as string

end tell

--result: the first word of the document as a string

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 321

Character B

An object of class Character is a text character.

PROPERTIES

Font The name of the font of the character or characters. If the font
varies within a range of characters, the Font property specifies
the font of the first character.
Class: String
Modifiable? Yes

Length The number of characters in a text object.
Class: Integer
Modifiable? No

Offset The offset, in characters, from the beginning of the document to
the first character of a text object.
Class: Integer
Modifiable? No

Size The size, in points, of the character or characters. If the size
varies within a range of characters, the Size property specifies
the size of the first character.
Class: Integer
Modifiable? Yes

Style The text styles of the character or characters. If the text styles
vary within a range of characters, the Style property specifies
the styles of the first character.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to the text object. The Off Styles property
specifies the styles that do not apply to the text object. Both
properties are lists of constants that specify text styles. See
“Elements of Text Objects” on page 314 for information
about how styles are used. The constants that can be used in
Style property lists are bold, italic, outline, underline,
and shadow.
Modifiable? Yes

A P P E N D I X B

Scriptable Text Editor Dictionary

322 Scriptable Text Editor Object Class Definitions

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to all the characters of the text object. The Off
Styles property specifies the styles that do not apply to any of
the characters of the text object. Both properties are lists of
constants that specify text styles. If a style does not appear in
either list, the style applies to some but not all of the characters
in the object. See “Elements of Text Objects” on page 314 for
more information. The constants that can be used in Uniform
Styles property lists are bold, italic, outline, underline,
and shadow.
Modifiable? No

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the characters

Paragraph Paragraphs contained in the characters

Text Series of characters contained in the characters

Text Item Text items contained in the characters

Word Words contained in the characters

COMMANDS HANDLED

Copy, Count, Cut, Data Size, Delete, Duplicate, Exists, Get, Make, Move,
Select, Set

DEFAULT VALUE CLASS RETURNED

Styled Text

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 323

EXAMPLES

delete the last character of word 5

tell document "Intro" of app "Scriptable Text Editor"

move (text from character 1 to character 21) to end

end tell

Document/Window B

A document object is an open Scriptable Text Editor document. The window
and document objects have the same elements and properties. They can be
used interchangeably.

PROPERTIES

Bounds The rectangle that bounds the content region of the window (the
portion of the window that contains the text of the document;
the “window frame”—the title bar and scroll bars—are not part
of the content region).
Class: List of four integers. The first two integers specify the
coordinates of the upper-left corner of the window, and the last
two integers specify the coordinates of the lower-right corner of
the window. (For information about window coordinates, see
“Notes” later in this section.)
Modifiable? Yes

Closable A Boolean parameter that indicates whether the window has a
close box. The value true specifies that the window has a close
box, and the value false indicates that it doesn’t. All Scriptable
Text Editor windows have close boxes.
Class: Boolean
Modifiable? No

Contents All the text contained in the window.
Class: Text
Modifiable? Yes

A P P E N D I X B

Scriptable Text Editor Dictionary

324 Scriptable Text Editor Object Class Definitions

Floating A Boolean parameter that indicates whether the window is a
floating window (a window that appears in front of all other
windows). The value true indicates that the window is a
floating window, and the value false indicates that it isn’t. No
Scriptable Text Editor windows are floating windows.
Class: Boolean
Modifiable? No

Index The number of the window (window 1 is the frontmost
window, window 2 is the window immediately behind
window 1, and so on).
Class: Integer
Modifiable? Yes

Modal A Boolean parameter that indicates whether the window is
modal (one that requires a response from the user before the
user can perform any other tasks). The value true indicates that
the window is modal, and the value false indicates that it
isn’t. No Scriptable Text Editor windows are modal.
Class: Boolean
Modifiable? No

Modified A Boolean parameter that indicates whether the document has
been modified since it was last saved. The value true indicates
that the document has been modified, and the value false
indicates that it hasn’t.
Class: Boolean
Modifiable? No

Name The name of the window (see “Notes” later in this section).
Class: Text
Modifiable? Yes

Position The upper-left corner of the content region of the window (the
portion of the window that contains the text of the document;
the “window frame”—the title bar and scroll bars—are not part
of the content region).
Class: List of two integers that specify the coordinates of the
upper-left corner (for information about window coordinates,
see “Notes” later in this section).
Modifiable? Yes

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 325

Resizable A Boolean parameter that indicates whether the window can be
resized. The value true indicates that the window can be
resized, and the value false indicates that it can’t. All of the
Scriptable Text Editor’s windows can be resized.
Class: Boolean
Modifiable? No

Selection The text selected in the window.
Class: Selection
Modifiable? Yes

Titled A Boolean parameter that indicates whether the window has a
title bar. The value true indicates that the window has a title
bar, and the value false indicates that it doesn’t. All Scriptable
Text Editor windows have title bars.
Class: Boolean
Modifiable? No

Visible A Boolean parameter that indicates whether the window is
visible. The value true indicates that the window is visible,
and the value false indicates that it isn’t.
Class: Boolean
Modifiable? No

Zoomable A Boolean parameter that indicates whether the window can be
zoomed. The value true indicates that the window can be
zoomed, and the value false indicates that it can’t. All of the
Scriptable Text Editor’s windows can be zoomed.
Class: Boolean
Modifiable? No

Zoomed A Boolean parameter that specifies whether the window is full
size or not. The value true specifies that the window is full
size, and the value false specifies that it is not.
Class: Boolean
Modifiable? Yes

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the document

Paragraph Paragraphs contained in the document

A P P E N D I X B

Scriptable Text Editor Dictionary

326 Scriptable Text Editor Object Class Definitions

Text Series of characters contained in the document

Text Item Text items contained in the document (see “Elements of Text
Objects” on page 314)

Word Words contained in the document

COMMANDS HANDLED

Close, Copy, Count, Delete, Duplicate, Exists, Get, Make, Move, Print, Revert,
Save, Select, Set

DEFAULT VALUE CLASS RETURNED

None; use Contents property to get the data of a document.

EXAMPLE

tell document "Colossal" of app "Scriptable Text Editor"

 delete paragraphs 1 thru 10

end tell

NOTES

The window and document object classes can be used interchangeably. This
is because each open document has a window, whose elements and properties
are always the same as those of its document. For example, if the first open
document is named Giant, the first window is also named Giant. A Scriptable
Text Editor document and its window contain the same text elements, so
references to text elements in a document and its window can be used
interchangeably. For example, word 1 of document "Giant" and word
1 of window "Giant" refer to the same word.

Both the Bounds and Position properties are specified in terms of points on the
display. The Position property contains a single point: the upper-left corner of
the window’s content region (the portion of the window within the “window
frame” made up of the title bar and scroll bars). The Bounds property contains
two points: the upper-left corner of the content region followed by the
lower-right corner. In AppleScript, points are specified by pairs of integers
known as coordinates. The first coordinate in the pair, known as the
x-coordinate, specifies the distance from the left edge of the display to the

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 327

point. The other coordinate, known as the y-coordinate, specifies the distance
from the top of the display to the point. (These distances are measured in
pixels, which are the picture elements that make up the display.) Figure B-1
illustrates the Bounds and Position properties of a sample window.

Figure B-1 Bounds and Position properties of a Scriptable Text Editor window

You specify points in AppleScript with lists. Figure B-1 shows that the point for
the Position property is specified by the list {100, 100}. The first item in this
list is the x-coordinate value of the point, and the second is the y-coordinate
value. The figure also shows that the Bounds property is specified by the list
{100, 100, 400, 400}. You specify the two points that define a rectangle
in a single list. In this list, {100, 100} are the coordinates of the upper-left
corner, and {400, 400} are the coordinates of the lower-right corner.

(100,0)
(0,0)

(0,100)

(400,0) (Pixels)

(0,400)

Position of document
"Introduction" {100,100}

(Pixels)

Bounds of document
"Introduction"

{100,100,400,400}

A P P E N D I X B

Scriptable Text Editor Dictionary

328 Scriptable Text Editor Object Class Definitions

Although the object class defined for the Bounds and Position properties is List,
the Scriptable Text Editor actually stores Bounds and Position property data in
a different form. To get Bounds or Position data as a List, you must copy the
data to AppleScript. For example,

copy (Bounds of front window) to x

get item 2 of x

returns the y-coordinate of the upper-left corner of the window, but

get item 2 of (Bounds of front window)

returns an error.

The Name property of a document is an object of class Text. You can change the
characters of the name of a document, but unlike other objects of class Text,
you cannot change its Font, Size, or Style properties.

File B

An object of class File contains the data for a Scriptable Text Editor document.
When a file object is opened, a corresponding document object is created.
(Only open documents are Scriptable Text Editor document objects.) When
a document object is saved, the data for the document is saved in the
corresponding file object, which is represented by a Scriptable Text Editor
document icon on the desktop.

PROPERTIES

Name The name of the file.
Class: String of the form "Disk:Folder1:Folder2:...:Filename"
(see “Notes”)
Modifiable? No

ELEMENT CLASSES

None

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 329

COMMANDS HANDLED

Open, Print

DEFAULT VALUE CLASS RETURNED

None

EXAMPLE

tell application "Scriptable Text Editor"

print file "MyDisk:Status Reports:Status - 11/12/92"

end tell

NOTES

To specify the name of a file, use a string of the form "Disk:Folder1:Folder2:
...:Filename"; for details, see “References to Files,” which begins on page 144.
You can also specify a string with only a filename ("Filename"). In this case,
AppleScript attempts to find the file in the current directory.

Insertion Point B

An object of class Insertion Point is a location between characters where text
can be inserted. The first insertion point in a container is the place between the
beginning of the container and the first character. In the Scriptable Text Editor,
insertion points are zero-length text objects. As a result, they have the same
properties and elements as text objects.

PROPERTIES

Font The name of the font of the insertion point.
Class: String
Modifiable? Yes

A P P E N D I X B

Scriptable Text Editor Dictionary

330 Scriptable Text Editor Object Class Definitions

Length The number of characters in a text object. For insertion points,
the value of the Length property is always 0.
Class: Integer
Modifiable? No

Offset The number of possible insertion points from the beginning of
the document to the insertion point. The first insertion point of a
document is the insertion point before the first character.
Class: Integer
Modifiable? No

Size The point size that is active at an insertion point.
Class: Integer
Modifiable? Yes

Style The text styles that are active at an insertion point.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that are active. The Off Styles property specifies the styles
that are not active. Both properties are lists of constants that
specify text styles. See “Elements of Text Objects” on page 314
for information about how styles are used. The constants that
can be used in Style property lists are bold, italic, outline,
underline, and shadow.
Modifiable? Yes

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object. For insertion points, the Uniform Styles property
indicates which text styles are active at the insertion point. It
always has the same value as the Style property.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. See “Elements of Text Objects” on
page 314 for information about how styles are used. The
constants that can be used in Uniform Styles property lists are
bold, italic, outline, underline, and shadow.
Modifiable? No

ELEMENT CLASSES

None

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 331

COMMANDS HANDLED

Copy, Count, Data Size, Exists, Get, Set

DEFAULT VALUE CLASS RETURNED

Reference

EXAMPLES

The following statement moves the first word of a document to the insertion
point after the tenth word.

tell document "Intro" of app "Scriptable Text Editor"

move word 1 to insertion point after word 10

end tell

The following statement does the same thing:

tell document "Intro" of app "Scriptable Text Editor"

move word 1 to after word 10

end tell

AppleScript allows you to leave out the words insertion point when
specifying locations with the Relative reference form. For more information
about the Relative reference form, see “Relative” on page 139.

Paragraph B

An object of class Paragraph is a text object that’s delimited by return
characters or by the beginning or end of the container.

A P P E N D I X B

Scriptable Text Editor Dictionary

332 Scriptable Text Editor Object Class Definitions

PROPERTIES

Font The name of the font of the characters of the paragraph. If the
font varies within the paragraph, the Font property specifies the
font of the first character.
Class: String
Modifiable? Yes

Length The number of characters in a text object.
Class: Integer
Modifiable? No

Offset The offset, in characters, from the beginning of the document to
the first character of a text object.
Class: Integer
Modifiable? No

Size The size, in points, of the characters of the paragraph. If the size
varies within the paragraph, the Size property specifies the size
of the first character.
Class: Integer
Modifiable? Yes

Style The text styles of the characters of the paragraph. If the text
styles vary within the paragraph, the Style property specifies
the styles of the first character.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to the text object. The Off Styles property
specifies the styles that do not apply to the text object. Both
properties are lists of constants that specify text styles. See
“Elements of Text Objects” on page 314 for information about
how styles are used. The constants that can be used in Style
property lists are bold, italic, outline, underline, and
shadow.
Modifiable? Yes

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to all the characters of the text object. The Off
Styles property specifies the styles that do not apply to any of

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 333

the characters of the text object. Both properties are lists of
constants that specify text styles. If a style does not appear in
either list, the style applies to some but not all of the characters
in the object. See “Elements of Text Objects” on page 314 for
information about how styles are used. The constants that can
be used in Uniform Styles property lists are bold, italic,
outline, underline, and shadow.
Modifiable? No

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the paragraphs

Paragraph Paragraphs contained in the paragraphs

Text Series of characters contained in the paragraphs

Text Item Text items contained in the paragraphs

Word Words contained in the paragraphs

COMMANDS HANDLED

Copy, Count, Cut, Data Size, Delete, Exists, Get, Make, Move, Select, Set

DEFAULT VALUE CLASS RETURNED

Styled Text

EXAMPLE

tell document "Memo" of app "Scriptable Text Editor"

set style of (paragraphs whose first word = "Hello") to bold

end tell

A P P E N D I X B

Scriptable Text Editor Dictionary

334 Scriptable Text Editor Object Class Definitions

Selection B

An object of class Selection is text that is currently selected. A blinking insertion
point is a zero-length selection.

PROPERTIES

Contents The text in the selection (because Scriptable Text Editor
documents only contain text, a selection can only contain text).
Class: Text
Modifiable? Yes

Font The name of the font of the text object. If the font varies within
the object, the Font property specifies the font of the first
character.
Class: String
Modifiable? Yes

Length The number of characters in a text object.
Class: Integer
Modifiable? No

Offset The offset, in characters, from the beginning of the document to
the first character of a text object.
Class: Integer
Modifiable? No

Size The size, in points, of the text object. If the size varies within the
object, the Size property specifies the size of the first character.
Class: Integer
Modifiable? Yes

Style The text styles of a text object. If the text styles vary within the
object, the Style property specifies the styles of the first character.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to the text object. The Off Styles property
specifies the styles that do not apply to the text object. Both
properties are lists of constants that specify text styles. See
“Elements of Text Objects” on page 314 for information
about how styles are used. The constants that can be used in
Style property lists are bold, italic, outline, underline,
and shadow.
Modifiable? Yes

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 335

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to all the characters of the text object. The Off
Styles property specifies the styles that do not apply to any of
the characters of the text object. Both properties are lists of
constants that specify text styles. If a style does not appear in
either list, the style applies to some but not all of the characters
in the object. See “Elements of Text Objects” on page 314 for
information about how styles are used. The constants that can
be used in Uniform Styles property lists are bold, italic,
outline, underline, and shadow.
Modifiable? No

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the selection

Paragraph Paragraphs contained in the selection

Text Series of characters contained in the selection

Text item Text items contained in the selection

Word Words contained in the selection

COMMANDS HANDLED

Copy, Count, Cut, Data Size, Delete, Duplicate, Exists, Get, Make, Move, Set

DEFAULT VALUE CLASS RETURNED

Reference

A P P E N D I X B

Scriptable Text Editor Dictionary

336 Scriptable Text Editor Object Class Definitions

EXAMPLES

tell front document of application "Scriptable Text Editor"

copy word 1

set selection to end of paragraph 1

paste

end tell

tell application "Scriptable Text Editor"

set style of the selection of front document to bold

end tell

NOTES

In the Scriptable Text Editor, the only objects of class selection are the Selection
properties of the application, document, and window objects.

Text B

An object of class Text is a series of one or more contiguous characters.

PROPERTIES

Font The name of the font of the text object. If the font varies
within the object, the Font property specifies the font of the
first character.
Class: String
Modifiable? Yes

Length The number of characters in a text object.
Class: Integer
Modifiable? No

Offset The offset, in characters, from the beginning of the document to
the first character of a text object.
Class: Integer
Modifiable? No

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 337

Size The size, in points, of the text object. If the size varies within the
object, the Size property specifies the size of the first character.
Class: Integer
Modifiable? Yes

Style The text styles of a text object. If the text styles vary within the
object, the Style property specifies the styles of the first character.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to the text object. The Off Styles property
specifies the styles that do not apply to the text object. Both
properties are lists of constants that specify text styles. See
“Elements of Text Objects” on page 314 for information
about how styles are used. The constants that can be used in
Style property lists are bold, italic, outline, underline,
and shadow.
Modifiable? Yes

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to all the characters of the text object. The Off
Styles property specifies the styles that do not apply to any of
the characters of the text object. Both properties are lists of
constants that specify text styles. If a style does not appear in
either list, the style applies to some but not all of the characters
in the object. See “Elements of Text Objects” on page 314 for
information about how styles are used. The constants that can
be used in Uniform Styles property lists are bold, italic,
outline, underline, and shadow.
Modifiable? No

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the text

Paragraph Paragraphs contained in the text

A P P E N D I X B

Scriptable Text Editor Dictionary

338 Scriptable Text Editor Object Class Definitions

Text Series of characters contained in the text

Text Item Text items contained in the text

Word Words contained in the text

COMMANDS HANDLED

Copy, Count, Cut, Data Size, Delete, Duplicate, Exists, Get, Make, Move,
Select, Set

DEFAULT VALUE CLASS RETURNED

Styled Text

EXAMPLE

tell document "Memo" of app "Scriptable Text Editor"

move (the text from paragraph 10 to paragraph 12) to end

end tell

NOTES

The Scriptable Text Editor does not allow you to refer to an object of class Text
with the Index reference form (such as text 5 of characters 1 thru
1024) because it does not make sense to number the many possible objects of
class Text in a text object.

Text is a plural class name. You cannot use it in places where AppleScript
expects a singular class name. For example, the following statement results
in a compilation error.

tell document "Intro" of app "Scriptable Text Editor"

get every text from paragraph 1 to paragraph 2

end tell

--causes an error because text is a plural class name

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 339

Text Item B

Objects of class Text Item are delimited by any of the characters specified by the
Scriptable Text Editor’s Text Item Delimiters property or by the beginning or
end of a container. You can modify the Text Item Delimiters property, but such
changes are lost when the user quits the application.

PROPERTIES

Font The name of the font of the text item. If the font varies
within the text item, the Font property specifies the font
of the first character.
Class: String
Modifiable? Yes

Length The number of characters in a text object.
Class: Integer
Modifiable? No

Offset The offset, in characters, from the beginning of the document to
the first character of a text object.
Class: Integer
Modifiable? No

Size The size, in points, of the text item. If the size varies within the
text item, the Size property specifies the size of the first character.
Class: Integer
Modifiable? Yes

Style The text styles of a text object. If the text styles vary within
the text item, the Style property specifies the styles of the
first character.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to the text object. The Off Styles property
specifies the styles that do not apply to the text object. Both
properties are lists of constants that specify text styles. See
“Elements of Text Objects” on page 314 for information
about how styles are used. The constants that can be used in
Style property lists are bold, italic, outline, underline,
and shadow.
Modifiable? Yes

A P P E N D I X B

Scriptable Text Editor Dictionary

340 Scriptable Text Editor Object Class Definitions

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to all the characters of the text object. The Off
Styles property specifies the styles that do not apply to any of
the characters of the text object. Both properties are lists of
constants that specify text styles. If a style does not appear in
either list, the style applies to some but not all of the characters
in the object. See “Elements of Text Objects” on page 314 for
information about how styles are used. The constants that can
be used in Uniform Styles property lists are bold, italic,
outline, underline, and shadow.
Modifiable? No

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the text items

Paragraph Paragraphs contained in the text items

Text Series of characters contained in the text items

Text Item Text items contained in the text items

Word Words contained in the text items

COMMANDS HANDLED

Copy, Count, Cut, Data Size, Delete, Duplicate, Exists, Get, Make, Move,
Select, Set

DEFAULT VALUE CLASS RETURNED

Styled Text

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 341

EXAMPLE

tell document "Report" of app "Scriptable Text Editor"

copy text item 2 to x

end tell

In this example, if the document Report begins with “Tomato, Banana,
Pineapple”, then the value of x is "Banana".

NOTE

The characters used to separate text item objects are specified in the Scriptable
Text Editor’s Text Item Delimiters property. At startup the default value of the
Scriptable Text Editor’s Text Item Delimiters property is a single-item list that
contains a comma: {","}. You can set this delimiter to a different value or add
additional delimiters, but the new values are lost when the user quits the
application.

Text Style Info B

An object of class Text Style Info specifies the styles of a text object. The Style
and Uniform Styles properties of text objects are text style info objects.

PROPERTIES

On Styles The styles that apply to the text object.
Class: List of constants (see “Notes” later in this section)
Modifiable? Yes

Off Styles The styles that do not apply to the text object.
Class: List of constants (see “Notes” later in this section)
Modifiable? Yes

ELEMENT CLASSES

None

A P P E N D I X B

Scriptable Text Editor Dictionary

342 Scriptable Text Editor Object Class Definitions

COMMANDS HANDLED

Copy, Data Size, Exists, Get, Set

DEFAULT VALUE CLASS RETURNED

Record; text style info

EXAMPLES

set the style of word 1 to {On Styles:{italic}, ¬
Off Styles:{bold, shadow}}

set the style of word 1 to {On Styles:{italic, bold}}

set the style of word 1 to {bold, italic}

get words whose style contains bold

NOTES

The constants that can be used in Style property lists are bold, italic,
outline, underline, and shadow. For a complete description of text
styles, see “Elements of Text Objects” on page 314.

Window B

See the definition of the document object class on page 323.

Word B

Generally speaking, words in English are text objects delimited by spaces,
return characters, or the beginning or end of a container. (For a more precise
definition, see page 61.) Words in other languages are defined by the script
system for each language if the appropriate script system is installed.

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Object Class Definitions 343

PROPERTIES

Font The name of the font of the word. If the font varies within the
word, the Font property specifies the font of the first character.
Class: String
Modifiable? Yes

Length The number of characters in a text object.
Class: Integer
Modifiable? No

Offset The offset, in characters, from the beginning of the document to
the first character of a text object.
Class: Integer
Modifiable? No

Size The size, in points, of the word. If the size varies within the
word, the Size property specifies the size of the first character.
Class: Integer
Modifiable? Yes

Style The text styles of a text object. If the text styles vary within the
word, the Style property specifies the styles of the first character.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to the text object. The Off Styles property
specifies the styles that do not apply to the text object. Both
properties are lists of constants that specify text styles. See
“Elements of Text Objects” on page 314 for information
about how styles are used. The constants that can be used in
Style property lists are bold, italic, outline, underline,
and shadow.
Modifiable? Yes

Uniform Styles
The text styles that are uniformly “on” or “off” for all characters
of a text object.
Class: Text Style Info. Objects of this class have two properties:
On Styles and Off Styles. The On Styles property specifies the
styles that apply to all the characters of the text object. The Off
Styles property specifies the styles that do not apply to any of
the characters of the text object. Both properties are lists of
constants that specify text styles. If a style does not appear in
either list, the style applies to some but not all of the characters

A P P E N D I X B

Scriptable Text Editor Dictionary

344 Scriptable Text Editor Object Class Definitions

in the object. See “Elements of Text Objects” on page 314 for
information about how styles are used. The constants that can
be used in Uniform Styles property lists are bold, italic,
outline, underline, and shadow.
Modifiable? No

ELEMENT CLASSES

See “Elements of Text Objects” on page 314 for a general discussion of these
element classes.

Character Characters contained in the words

Paragraph Paragraphs contained in the words

text Series of characters contained in the words

Text Item Text items contained in the words

Word Words contained in the words

COMMANDS HANDLED

Copy, Count, Cut, Data Size, Delete, Duplicate, Exists, Get, Make, Move,
Select, Set

DEFAULT VALUE CLASS RETURNED

Styled Text

EXAMPLES

move word 2 to end of document "Huge"

set size of word 10 to 18

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Commands 345

Scriptable Text Editor Commands B

This section defines the commands that are understood by the Scriptable Text
Editor and its objects.

The Scriptable Text Editor supports most of the standard application commands
listed in Chapter 4, “Commands.” As is true for most scriptable applications,
the Scriptable Text Editor’s definitions for some of these commands differ
slightly from the standard definitions. Table B-1 summarizes the differences
between the defined behavior of the standard commands and the Scriptable Text
Editor behavior.

Table B-1 Variations from standard behavior in Scriptable Text Editor versions of
standard application commands

Standard
application command Scriptable Text Editor version

Close Identical to the standard version defined on page 87.

Copy Behaves like the standard version defined on page 88, except that
the direct parameter must be a single object. The Scriptable Text
Editor cannot copy a range of objects.

Count Identical to the standard version defined on page 92.

Data Size Behaves like the standard version defined on page 97, except that
the Scriptable Text Editor returns the size of text objects as a data
class that includes writing code information. The writing code
information adds 4 bytes to the data size.

Delete Identical to the standard version defined on page 98.

Duplicate Behaves like the standard version defined on page 99, except that
the direct parameter must be a single object. The Scriptable Text
Editor cannot duplicate a range of objects.

Exists Identical to the standard version defined on page 99.

Get Identical to the standard version defined on page 100.

continued

A P P E N D I X B

Scriptable Text Editor Dictionary

346 Scriptable Text Editor Commands

Make Behaves like the standard version defined on page 105, with some
exceptions. The default location for new text objects is the current
selection; the default location for new document and window
objects is in front of other Scriptable Text Editor windows.

When you create text objects with the Make command, the
Scriptable Text Editor automatically adds the appropriate delimiters
before or after the new text objects, depending on the script code for
the new text, the script code for the surrounding text, and, in the
case of text items, the value of the Text Item Delimiters property. Do
not include delimiters in the with data parameter.

Move Behaves like the standard version defined on page 106, except that
the direct parameter must be a single object. The Scriptable Text
Editor cannot move a range of objects.

Open Behaves like the standard version defined on page 107, except that
the Scriptable Text Editor can only open text files or its own files.
If you use the Open command to open a file of type "TEXT", the
Scriptable Text Editor automatically converts the file to a Scriptable
Text Editor file and appends “.s” to the end of the filename.

Print Identical to the standard version defined on page 108.

Quit Identical to the standard version defined on page 109.

Run Identical to the standard version defined on page 110.

Save Behaves like the standard version defined on page 112, except that it
has an optional parameter that allows you to save Scriptable Text
Editor files as text files.

The direct parameter of the Save command must be a single object.
The Scriptable Text Editor cannot save a range of objects.

Set Identical to the standard version defined on page 113.

Table B-1 Variations from standard behavior in Scriptable Text Editor versions of
standard application commands (continued)

Standard
application command Scriptable Text Editor version

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Commands 347

Table B-2 summarizes the commands other than the standard application
commands that are supported by the Scriptable Text Editor.

The sections that follow describe both the commands listed in Table B-1 that
differ from the standard versions and the commands listed in Table B-2.

Copy B

The standard Copy command is defined on page 88. The Scriptable Text Editor
version of the Copy command behaves like the standard version, except the
direct parameter of the Scriptable Text Editor command cannot be a list; it must
be a reference to a single object. For example, the following statement results in
an error:

tell document "Intro" of app "Scriptable Text Editor"

copy words whose style contains bold to beginning

end

--result: error; Copy can handle single objects only

Table B-2 Other Scriptable Text Editor commands

Command Description

Cut Removes an object and puts it on the Clipboard

Paste Copies the object or objects on the Clipboard to the current
selection

Revert Replaces a document with the most recently saved version

Select Selects an object or document

A P P E N D I X B

Scriptable Text Editor Dictionary

348 Scriptable Text Editor Commands

Cut B

The Cut command is a request to remove an object and put it on the Clipboard.
If the Cut command includes a direct parameter, it removes the object specified
in the direct parameter. If the command does not include a direct parameter, it
removes the object in the current selection.

The Cut command has the same result as choosing the Cut menu item in the
Scriptable Text Editor: the object that was cut replaces any objects that were
previously on the Clipboard.

SYNTAX

cut [referenceToObject]

PARAMETER

referenceToObject
A reference to the object to be cut.
Class: Reference

RESULT

None

EXAMPLE

Both of the following statements cut the first paragraph of a document.

tell application "Scriptable Text Editor"

set the selection to paragraph 1 of document "Test"

cut

end tell

tell application "Scriptable Text Editor"

cut paragraph 1 of document "Test"

end tell

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Commands 349

NOTES

If you do not specify a direct parameter and there is no selection to be cut, the
Scriptable Text Editor does not change the contents of the Clipboard.

If you specify a direct parameter, it must be a reference to a single object. The
Scriptable Text Editor cannot cut ranges of objects. For example, the following
statement results in an error.

tell application "Scriptable Text Editor"

cut words of paragraph 5 of front document

end tell

--result: error, because Cut can handle single objects only

Data Size B

The standard Data Size command is defined on page 97. The Scriptable Text
Editor version of the Data Size command behaves like the standard version. It
returns the size of the data (a value) that would result from a Get command on
an object or objects.

By default, the Scriptable Text Editor returns text objects as class Styled Text,
including font and style information. The additional information adds a
variable number of bytes to the data size. As a result, the size of a text object
will be greater than the number of bytes contained in the corresponding text
without the font and style information. To get the data size of a text object
without font and style information, use the as className parameter to request
the size of the data as text; for example,

data size of word 1 of front document as text

Duplicate B

The standard Duplicate command is defined on page 99. The Scriptable Text
Editor version of the Duplicate command behaves like the standard version
of the command, except the direct parameter cannot be a list; it must be a

A P P E N D I X B

Scriptable Text Editor Dictionary

350 Scriptable Text Editor Commands

reference to a single object. For example, the following statement results in
an error:

tell document "Intro" of app "Scriptable Text Editor"

duplicate words whose style contains bold to beginning

end

--result: error; Duplicate can handle single objects only

Make B

The standard Make command is defined on page 105. The Scriptable Text
Editor version of the Make command behaves like the standard version except
that the referenceToLocation parameter, which is required in the standard version
of the command, is optional in the Scriptable Text Editor version:

make [new] className [at referenceToLocation] ¬

[with properties ¬
{ propertyName:propertyValue [, propertyName:propertyValue]...}]¬

[with data dataValue]

In addition, the Scriptable Text Editor automatically adds delimiters as needed
around new text objects. When you create text objects with the Make com-
mand, do not include delimiters in the data.

When making a new text item, the Scriptable Text Editor uses the first delimiter
listed in its Text Item Delimiters property as the item’s delimiter.

Not all languages require delimiters between each word. When making new
words, the Scriptable Text Editor relies on both the script code of the text to
be inserted and the script code of the text into which it is being inserted to
determine whether to use delimiters and, if so, which delimiters to use and
where to place them.

Finally, the Scriptable Text Editor provides default values for the data and
properties of objects created with the Make command. If you do not specify
values for all the properties or data of a new object, the Scriptable Text Editor
provides the default values.

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Commands 351

Move B

The standard Move command is defined on page 106. The Scriptable Text
Editor version of the Move command behaves like the standard version,
except that the direct parameter cannot be a list; it must be a reference to a
single object.

For example, the following statement results in an error:

tell document "Intro" of app "Scriptable Text Editor"

move words whose style contains bold to beginning

end

--result: error; Move can handle single objects only

Open B

The standard Open command is defined on page 107. The Scriptable Editor can
open its own files and text files (files of type "TEXT"). If you use the Open
command to open a file of type "TEXT", the Scriptable Text Editor automati-
cally converts the file to a Scriptable Text Editor file and appends “.s” to the
end of the filename.

Paste B

The Paste command is a request to make a copy of the objects on the Clipboard
and replace the current selection with them. The Paste command has the
same effect as choosing the Paste command from the Scriptable Text Editor’s
Edit menu.

SYNTAX

paste

A P P E N D I X B

Scriptable Text Editor Dictionary

352 Scriptable Text Editor Commands

PARAMETERS

None

RESULT

None

EXAMPLE

tell application "Scriptable Text Editor"

select paragraph 1 of document "Report"

cut

select the last insertion point of document "Report"

paste

end tell

NOTES

The Paste command replaces the current selection with the contents of the
Clipboard. If the current selection is an insertion point, the Paste command
inserts the contents of the Clipboard at the insertion point.

Revert B

The Revert command is a request to replace one or more documents with the
versions of the documents that were most recently saved.

SYNTAX

revert referenceToDocument

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Commands 353

PARAMETER

referenceToDocument
A reference to the document or documents to be replaced by
the versions of the documents that were most recently saved.
Because the Scriptable Text Editor’s document and window
objects are interchangeable, either document or window objects
can be specified.
Class: Reference

RESULT

None

EXAMPLE

revert document "Really Big"

Save B

The standard Save command is defined on page 112. The Scriptable Text Editor
version behaves like the standard version, except that it has an extra optional
parameter (as text) that allows you to save Scriptable Text Editor files as text
files (files of type "TEXT"). Without this parameter, files are saved as Scriptable
Text Editor files.

save referenceToObject [in referenceToFile] [as text]

In addition, the direct parameter of the Scriptable Text Editor version cannot be
a list; it must be a reference to a single object. For example, the following
statement results in an error:

tell application "Scriptable Text Editor"

save documents 1 thru 3

end tell

--result: error; Save can handle single objects only

A P P E N D I X B

Scriptable Text Editor Dictionary

354 Scriptable Text Editor Commands

Select B

A Select command is a request to select a text object or bring a Scriptable Text
Editor document or window to the front. Using the Select command to select a
text object is the same as highlighting the text object by double-clicking it or
dragging the cursor across it while holding down the mouse button.

SYNTAX

select referenceToObject

PARAMETER

referenceToObject
A reference to the text object, document, or window to select.
Class: Reference

RESULT

None

EXAMPLE

tell application "Scriptable Text Editor"

select paragraph 5 of document "Introduction"

copy

select paragraph 10 of document "New Introduction"

paste

end tell

A P P E N D I X B

Scriptable Text Editor Dictionary

Scriptable Text Editor Errors 355

Scriptable Text Editor Errors B

This section lists error numbers and messages returned by the Scriptable Text
Editor. For information about writing handlers for these and other errors, see
Chapter 8, “Handlers.”

Error
number Error message

–15301 You must run on 512Ke or later.
–15302 Application Memory Size is too small.
–15303 Not enough memory to run Scriptable Text Editor.
–15304 Cannot exceed 32,000 characters.
–15305 Could not create self-address descriptor.
–15306 Cannot have more than 6 documents open at a time.
–15307 Could not open a new window.
–15308 Could not get style scrap.
–15309 User canceled.
–15310 Bad data.
–15311 Cannot handle list - need single item.
–15312 Had trouble with the Print job.
–15313 Not a valid font size.
–15314 No such property.
–15315 Property is read-only.
–15316 Cannot select that thing.
–15317 Cannot perform that comparison.
–15318 Invalid comparison.
–15319 Cannot handle that file type.
–15320 Need an open window to do that.
–15321 Cannot perform that operation on text lists - try a text range or

repeat loop.
–15322 Cannot get data for that kind of object.
–15323 Window and file names must be 31 characters or less.
–15324 You must run on System 7 or later.

357

A P P E N D I X C

Error Messages C

This appendix lists error numbers and error messages for the following types
of errors:

■ Operating System errors are errors that occur when AppleScript or an
application requests services from the Operating System. They are rare, and
more important, there’s usually nothing you can do about them in a script. A
few, such as "File <name>wasn't found" and "Application isn't
running", make sense for scripts to handle.

■ Apple event errors occur when Apple events sent by AppleScript fail. Many
of these errors, such as "No user interaction allowed", are of
interest to users. Also of interest to users are errors that have to do with
reference forms, as well as errors like "No such object".

■ Apple Event Registry errors are errors returned by applications when
handling standard AppleScript commands (commands that apply to
all applications). Many of these, such as "The specified object is
a property, not an element", are of interest to users and should
be handled.

■ AppleScript errors are errors that occur when AppleScript processes script
statements. Nearly all of these are of interest to users.

For errors returned by an application, see the documentation for that
application.

Figure C-0
Listing C-0
Table C-0

A P P E N D I X C

Error Messages

358 Operating System Errors

Operating System Errors C

Error
number Error message

0 No error.

–34 Disk <name> is full.

–35 Disk <name> wasn't found.

–37 Bad name for file.

–38 File <name> wasn't open.

–39 End of file error.

–42 Too many files open.

–43 File <name> wasn't found.

–44 Disk <name> is write protected.

–45 File <name> is locked.

–46 Disk <name> is locked.

–47 File <name> is busy.

–48 Duplicate file name.

–49 File <name> is already open.

–50 Parameter error.

–51 File reference number error.

–61 File not open with write permission.

–108 Out of memory.

–120 Folder <name> wasn't found.

–124 Disk <name> is disconnected.

–128 User canceled.

–192 A resource wasn't found.

–600 Application isn't running.

–601 Not enough room to launch application with special requirements.

–602 Application is not 32-bit clean.
continued

A P P E N D I X C

Error Messages

Operating System Errors 359

–605 More memory is needed than is specified in the size resource.

–606 Application is background-only.

–607 Buffer is too small.

–608 No outstanding high-level event.

–609 Connection is invalid.

–904 Not enough system memory to connect to remote application.

–905 Remote access is not allowed.

–906 <name> isn't running or program linking isn't enabled.

–915 Can't find remote machine.

–30720 Invalid date and time <date string>.

Error
number Error message

A P P E N D I X C

Error Messages

360 Apple Event Errors

Apple Event Errors C

Error
number Error message

–1700 Can't make some data into the expected type.

–1701 Some parameter is missing for <commandName>.

–1702 Some data could not be read.

–1703 Some data was the wrong type.

–1704 Some parameter was invalid.

–1705 Operation involving a list item failed.

–1706 Need a newer version of the AppleEvent manager.

–1707 Event isn't an AppleEvent.

–1708 <reference> doesn't understand the <commandName> message.

–1709 AEResetTimer was passed an invalid reply.

–1710 Invalid sending mode was passed.

–1711 User canceled out of wait loop for reply or receipt.
continued

–1712 AppleEvent timed out.

–1713 No user interaction allowed.

–1714 Wrong keyword for a special function.

–1715 Some parameter wasn't understood.

–1716 Unknown AppleEvent address type.

–1717 The handler <identifier> is not defined.

–1718 Reply has not yet arrived.

–1719 Can't get <reference>. Invalid index.

–1720 Invalid range.

–1721 <expression> doesn't match the parameters <parameterNames> for
<commandName>.

–1723 Can't get <expression>. Access not allowed.

–1725 Illegal logical operator called.

A P P E N D I X C

Error Messages

Apple Event Registry Errors 361

Apple Event Registry Errors C

–1726 Illegal comparison or logical.

–1727 Expected a reference.

–1728 Can't get <reference>.

–1729 Object counting procedure returned a negative count.

–1730 Container specified was an empty list.

–1731 Unknown object type.

–1750 Scripting component error.

–1751 Invalid script id.

–1752 Script doesn't seem to belong to AppleScript.

–1753 Script error.

–1754 Invalid selector given.

–1755 Invalid access.

–1756 Source not available.

–1757 No such dialect.

–1758 Data couldn't be read because its format is obsolete.

–1759 Data couldn't be read because its format is too new.

–1760 Recording is already on.

Error
number Error message

–10000 AppleEvent handler failed.

–10001 A descriptor type mismatch occurred.

–10002 Invalid key form.

–10003 Can't set <object or data> to <object or data>. Access not allowed.

–10004 A privilege violation occurred.

–10005 The read operation wasn't allowed.

Error
number Error message

A P P E N D I X C

Error Messages

362 Apple Event Registry Errors

–10006 Can't set <object or data> to <object or data>.

–10007 The index of the event is too large to be valid.

–10008 The specified object is a property, not an element.

–10009 Can't supply the requested descriptor type for the data.

–10010 The AppleEvent handler can't handle objects of this class.

–10011 Couldn't handle this command because it wasn't part of the current transaction.

–10012 The transaction to which this command belonged isn't a valid transaction.

–10013 There is no user selection.

–10014 Handler only handles single objects.

–10015 Can't undo the previous AppleEvent or user action.

A P P E N D I X C

Error Messages

AppleScript Errors 363

AppleScript Errors C

Error
number Error message

–2701 Can't divide <number> by zero.

–2702 The result of a numeric operation was too large.

–2703 <reference> can't be launched because it is not an application.

–2704 <reference> isn't scriptable.

–2705 The application has a corrupted dictionary.

–2706 Stack overflow.

–2707 Internal table overflow.

–2708 Attempt to create a value larger than the allowable size.

–2709 Can't get the event dictionary.

–2720 Can't both consider and ignore <attribute>.

–2721 Can't perform operation on text longer than 32K bytes.

–2729 Message size too large for the 7.0 Finder.

–2740 A <language element> can't go after this <language element>.

–2741 Expected <language element> but found <language element>.

–2750 The <name> parameter is specified more than once.

–2751 The <name> property is specified more than once.

–2752 The <name> handler is specified more than once.

–2753 The variable <name> is not defined.

–2754 Can't declare <name> as both a local and global variable.

–2755 Exit statement was not in a repeat loop.

–2760 Tell statements are nested too deeply.

–2761 <name> is illegal as a formal parameter.

–2762 <name> is not a parameter name for the event <event>.

–2763 No result was returned for some argument of this expression.

A P P E N D I X C

Error Messages

364 AppleScript Errors

363

Glossary

Apple event A high-level message that
adheres to the interprocess messaging
protocol on which AppleScript is based.

AppleScript A scripting language defined
by Apple Computer, Inc., that allows you to
control Macintosh computers without using
the keyboard or mouse.

AppleScript command A command
handled by AppleScript. AppleScript
commands do not have to be included
in Tell statements.

application command A command
handled by an application or its objects.
An application command must either
be included in a Tell statement or include
the name of the application in its direct
parameter.

application object An object stored in an
application or its documents and managed
by the application.

Arbitrary Element reference form A
reference form that specifies an arbitrary
object in a container. If the container is a
value, AppleScript uses a random-number
generator to choose the object. If the
container is an application object, the
application chooses the object.

assignment statement A statement that
assigns a value to a variable. Assignment
statements begin with Set or Copy.

attachable application An application
that can be customized by attaching scripts
to specific objects in the application, such as
buttons and menu items.

attaching a script to an application
object The process of associating a script
with a specific application object. Each
application determines which, if any, of its
objects can have scripts attached.

attribute A characteristic that can be
considered or ignored in a Considering or
Ignoring statement.

binary operator An operator that derives
a new value from a pair of values.

Boolean A logical truth value. The two
possible Boolean values are true and
false. Boolean is an AppleScript
value class.

Boolean expression An expression whose
value can be either true or false.

child script object A script object that
inherits properties and handlers from
another script object, called the parent.

Class The name of the AppleScript value
class for a class identifier, a reserved word
that specifies the class to which an object
or value belongs. See also object class,
value class.

coercion The process of converting a
value from one class to another.

G L O S S A R Y

364

command A word or phrase that requests
an action. In AppleScript, there are four
types of commands: AppleScript commands,
application commands, scripting additions,
and user-defined commands.

command handler A handler for an
application or system command. Command
handlers are similar to subroutines, but
instead of defining responses to user-defined
commands, they define responses to com-
mands, such as Open, Print, or Move, that
are sent to application objects.

comment Descriptive text that is ignored
by AppleScript when a script is executed.

compile In AppleScript, to convert a
script from the form typed into a script
editor to a form that can be used by
AppleScript. The process of compiling a
script includes syntax and vocabulary
checks. A script is compiled when you first
run it and again when you modify it and
then run it again, save it, or check its syntax.

compiled script The form to which a
script is converted when you compile it. The
form of a compiled script is independent of
the dialect in which a script is written.

complete reference A reference that has
enough information to identify an object or
objects uniquely. For a reference to an applica-
tion object to be complete, its outermost
container must be the application itself.

composite value A value that contains
other values. AppleScript has three types of
composite values: lists, records, and strings.

compound statement A statement that
occupies more than one line and contains
other statements. A compound statement
begins with a reserved word indicating its
function and ends with the word end.

conditional statement See If statement.

Considering statement A control state-
ment that lists a specific set of attributes to
be considered when AppleScript performs
operations on strings or sends commands to
applications.

constant A reserved word defined by
AppleScript or an application in its dictio-
nary. Constant is an AppleScript value class.

container An object that contains one or
more other objects, known as elements. You
specify containers with the reserved words
of or in.

continuation character A character (¬)
used in the Script Editor to extend a
statement to the next line.

control statement A statement that
controls when and how one or more other
statements are executed. The types of control
statements you can use in AppleScript are
Tell, If, Repeat, Considering and Ignoring,
With Timeout, and With Transaction.

current application Either the default
target application or whatever application
is currently set as a script’s parent property.

current directory The folder or volume
whose contents you can see when you
choose Open or the equivalent command
from an application’s File menu.

G L O S S A R Y

365

current script The script from which a
user-defined command is executed.

Data An AppleScript value class used for
data that do not belong to any of the other
AppleScript value classes. In AppleScript, a
value that belongs to the class Data can be
stored in a variable, but cannot be
manipulated.

Date An AppleScript value class used for
a value that specifies a time, day of the
month, month, and year.

declaration The first occurrence of a
variable or property identifier in a script.
The form and location of the declaration
determine how AppleScript treats the
identifier in that script—for example, as a
property, global variable, or local variable.

default target The object that receives a
command if no object is specified or if the
object is incompletely specified in the
command. Default targets are specified in
Tell statements.

delegation The use of a Continue
statement to call a handler in a parent script
object or the current application.

dialect A version of the AppleScript
language that resembles a specific human
language or programming language; for
example, AppleScript English resembles
English, AppleScript Japanese resembles
Japanese, and so on. All scripts, regardless
of the dialects in which they are written, are
converted to the same form, called a
compiled script, when they are compiled.

dictionary The set of commands, objects,
and other words that are understood by a
particular application or by a version of the
system software. Each application or
version of the system software has its own
dictionary.

direct parameter The parameter
immediately following a command.

element An object contained within
another object, or a type of object that can
be contained in another object. For example,
a word object is an element of a paragraph
object, but it is possible to have a paragraph
with no words.

empty list A list with no items.

error expression An expression, usually a
string, that describes an error.

error handler A collection of statements
that are executed in response to an error
message.

error message A message that is returned
by an application, by AppleScript, or by the
Macintosh Operating System if an error
occurs during the handling of a command.

error number An integer that identifies
an error.

evaluation The conversion of an expres-
sion to a value.

Every Element reference form A
reference form that specifies every object
of a particular class in a container.

Exit statement A statement used in the
body of a Repeat statement to exit the
Repeat statement.

G L O S S A R Y

366

explicit Run handler A handler at the top
level of a script or a script object that begins
with on run and ends with end. A single
script or script object can include an explicit
Run handler or an implicit Run handler, but
not both.

expression In AppleScript, any series of
words that has a value.

filter A phrase, added to a reference to a
system or application object, that specifies
elements in a container that match one or
more conditions.

Filter reference form A reference form
that specifies all objects in a container that
match one or more conditions specified
in a Boolean expression.

formal parameter See parameter variable.

global variable A variable that is available
anywhere in the script in which it is defined.

handler A collection of statements that are
executed in response to a command or an
error message.

identifier A series of characters that
identifies a value or handler in AppleScript.
Identifiers are used to name variables,
subroutines, parameters, properties, and
commands.

ID reference form A reference form
that specifies an object by the value of its
ID property.

If statement A control statement that
contains one or more Boolean expressions
whose results determine whether to execute
other statements within the If statement.

Ignoring statement A control statement
that lists a specific set of attributes to be
ignored when AppleScript performs
operations on strings or sends commands to
applications.

implicit Run handler All the statements
at the top level of a script except for
property declarations, script object
definitions, and other command handlers.
A single script or script object can include
an explicit Run handler or an implicit Run
handler, but not both.

Index reference form A reference form
that specifies an object or location by
describing its position with respect to the
beginning or end of the container.

infinite loop A Repeat statement that
does not specify when repetition stops.

inheritance The process by which a child
script object receives the properties and
handlers of a parent script object.

initializing a script object The process of
creating a script object from the properties
and handlers listed in a script object
definition. AppleScript creates a script
object when it runs a script or handler that
contains a script object definition.

insertion point An object class, supported
by many applications, that specifies a
place where another object or objects can
be added.

integer A positive or negative number
without a fractional part. In AppleScript,
Integer is a value class.

G L O S S A R Y

367

item A value in a list or record. An item is
specified by its offset from the beginning or
end of the list or record.

labeled parameter A parameter that is
identified by a label. See also positional
parameter.

list An ordered collection of values.
Lists are enclosed by braces. The values in
a list are separated by commas. List is an
AppleScript value class.

literal expression An expression that
evaluates to itself.

local variable A variable that is available
only in the handler in which it is defined.
Variables that are defined within
subroutines, command handlers, and error
handlers are local unless they are explicitly
declared as global variables.

loop A series of statements that is
repeated.

looping variable A variable whose value
controls the number of times the statements
in a Repeat statement are executed.

Middle Element reference form A
reference form that specifies the middle
object of a particular class in a container.

Name reference form A reference form
that specifies an object by the value of its
Name property.

nested control statement A control
statement that is contained within another
control statement.

Number A synonym for the AppleScript
value classes Integer and Real.

object An identifiable part of an
application, or thing within an application,
that can respond to commands.

object class A category for objects that
share characteristics such as properties
and element classes and respond to the
same commands.

operand A value from which an operator
derives another value.

operation An expression that derives a
new value from one or more other
values. An operator, such as the addition
operator (+), concatenation operator (&),
or Contents Of, determines how the new
value is derived.

operator An AppleScript language element
(a word, series of words, or symbol) used in
an expression to derive a value from
another value or pair of values.

optional parameter A parameter that
need not be included for a command to
be successful.

parameter variable An identifier in a
subroutine definition that represents the
actual value of a parameter when the
subroutine is called. Also called formal
parameter.

parent script object A script object from
which another script object, called the child,
inherits properties and handlers.

partial reference A reference that does not
include enough information to identify
an object or objects uniquely. When
AppleScript encounters a partial reference,
it uses the default object specified in the Tell
statement to complete the reference.

G L O S S A R Y

368

positional parameter A subroutine
parameter that is identified by the order
in which it is listed. In a subroutine call,
positional parameters are enclosed in
parentheses and separated by commas.
They must be listed in the order in which
they appear in the corresponding
subroutine definition.

property A characteristic of an object that
has a single value and is identified by a
label. See also script property.

Property reference form A reference form
that specifies a property of an application
object, record or script object.

Range reference form A reference form
that specifies a series of objects of the same
class in the same container.

real A number that can include a decimal
fraction. Real is an AppleScript value class.

record An unordered collection of
properties. Properties within a record are
identified by labels that are unique within
the record. Record is an AppleScript
value class.

recordable application An application
that uses Apple events to report user
actions for recording purposes. When
recording is turned on, the Script Editor
creates statements corresponding to any
significant actions you perform in a
recordable application.

recursive subroutine A subroutine that
calls itself.

reference A phrase that specifies one or
more objects using the reference forms
defined in the AppleScript dialect you
are using. Reference is an AppleScript
value class.

reference form The syntax for referring
to objects. The reference forms for the
AppleScript English dialect include
Arbitrary Element, Every Element, Filter,
ID, Index, Middle Element, Name,Property,
Range, and Relative.

Relative reference form A reference form
that specifies an object or location by
describing its position in relation to another
object, known as the base, in the same
container.

Repeat statement A control statement
that contains a series of statements to be
repeated and, in most cases, instructions
that specify when the repetition stops.

required parameter A parameter that
must be included for a command to be
successful.

reserved words The words in system and
application dictionaries, including object
and command names, constants,
parameters, and properties.

result A value generated when a
command is executed or an expression
evaluated.

scope The visibility and context of a
variable or property, which determines
where else in a script you may refer to the
same variable. The scope of a variable
depends on where you declare it and

G L O S S A R Y

369

whether you declare it as global or local.
The scope of a property extends to the
entire script or script object in which it
is declared.

script A series of written instructions that,
when executed, cause actions in
applications and on the desktop.

scriptable application An application that
can respond to application commands sent
to it when an application such as Script
Editor runs a script.

script application An application whose
only function is to run the script associated
with it.

script code A constant that identifies
a particular script system for use on
Macintosh computers.

script editor An application used to create
and modify scripts.

Script Editor The script-editing applica-
tion that comes with the AppleScript
English language dialect.

scripting addition A file that provides
additional commands you can use in
scripts. Each scripting addition contains one
or more command handlers. If a scripting
addition is located in the Scripting
Additions folder (in the Extensions folder of
the System Folder), the command handlers
it provides are available for use by any
script whose target is an application on
that computer.

script object A user-defined object in a
script that combines data (in the form of
properties) and potential actions (in the
form of handlers).

script object definition A compound
statement that contains a collection of
properties, handlers, and other AppleScript
statements. A script object definition begins
with the reserved word script, followed
by an optional variable name, and ends
with the keyword end (or end script).

script property A named container in
which to store a value. Script properties are
similar to variables, but they are persistent.
Unlike variable values, script property
values are saved when you save a script.

script system A collection of system
software facilities that allow for the visual
representation of a particular writing
system. Script systems include Roman,
Japanese, Hebrew, Greek, and Thai.

simple statement A statement that is
contained on a single line and ends with
a return character. See also compound
statement.

simple value A value, such as an
integer or a constant, that does not
contain other values.

statement A series of AppleScript words,
similar to an English sentence, that contains
a request for an action or an expression to
be evaluated. See also compound
statement, simple statement.

string An ordered series of characters (a
character string). String is an AppleScript
value class.

Styled Text A synonym for the
AppleScript value class String. A string
referred to as Styled Text may include
style and font information.

G L O S S A R Y

370

subroutine A collection of statements that
are executed in response to a user-defined
command.

suite A set of AppleScript words that
are related.

synonym An AppleScript word, phrase, or
language element that has the same meaning
as another AppleScript word, phrase, or
language element. For example, the opera-
tor does not equal is a synonym for ≠.

syntax The arrangement of words in an
AppleScript statement.

syntax description A template for using a
command or control statement in a script.

target The recipient of a command.
Potential targets include application objects,
script objects, the current script, and the
current application.

Tell statement A control statement that
specifies the default target for the state-
ments it contains.

test A Boolean expression that specifies
the conditions of a filter or an If statement.

Text A synonym for the AppleScript value
class String.

Try statement A two-part compound
statement that contains a series of
AppleScript statements, followed by an
error handler to be invoked if any of
those statements cause an error.

unary operator An operator that derives a
new value from a single value.

user-defined command A command that
triggers the execution of a collection of
statements, called a subroutine, elsewhere
in the same script.

value A type of data that can be manipu-
lated by and stored in scripts. The
AppleScript value classes are Boolean,
Class, Constant, Data, Date, Integer, List,
Real, Record, Reference, and String.

value class A category of values with
similar characteristics. Values that belong
to the same class respond to the same
operators.

variable A named container in which to
store a value.

With Timeout statement A control
statement that allows you to change the
amount of time AppleScript waits for
application commands to complete before
stopping execution of the script.

With Transaction statement A control
statement that allows you to take advantage
of applications that support the notion of a
transaction—a sequence of related events
that should be performed as if they were a
single operation.

371

Index

Symbols

" character 62
* operator 166
/ operator 167
– operator 167
& operator 163, 177–178
() in syntax descriptions xix
+ operator 166
<= operator 165
< operator 164
= operator 163
>= operator 164
> operator 164
[] in syntax descriptions xix
\ character 62
^ operator 167
{} 49
| in syntax descriptions xix
≠ operator 164
≤ operator 165
≥ operator 164
¬ 25
«» 83–84
÷ operator 167

A

adding values to lists 51
addition of date and number values 180–181
addition operator 166
after reserved word 139
alias versus file 144–145
And operator 163

angle brackets in scripts, terms within 83–84
Apple event errors 205, 359–360
Apple Event Registry errors 205, 361
Apple events 14, 314
AppleScript

commands 73–74, 84–117
defined 3
errors 205, 362
extension 14
and non-Roman script systems 317–318
Text Item Delimiters property 158–160

AppleTalk networks 146
AppleTalk zones 146, 148
application commands 72–73, 84–117
application errors 205
Application object class 318–320
application objects 17, 119
application responses attribute 215
applications

customizing using AppleScript 7, 11
integrating using AppleScript 7–8
references to 146–148
on remote computers 148

app reserved word 29
Arbitrary Element reference form 126–127
A Reference To operator 153–154, 168
arithmetic, date-time 180–181
arithmetic operators 166–167, 297
ASCII collating sequence 173
As operator 67, 167, 225
assignment statements 22, 151
associativity, of operators 178–179
attachable applications 11
attaching scripts to objects 241
attributes 214–217
automating activities 5

I N D E X

372

B

back of reserved words 139
back reserved word 131, 132
backslash character in strings 62
"Bad Data" error message 317
before reserved word 139
beginning reserved word 132
Begins With operator 165
binary operator 21
Boolean expressions 190
Boolean value class 40
Bounds property 323, 327–328
brackets xix

C

capitalization in AppleScript 28
case attribute 214
case sensitivity 28
cell object 186
Character object class 321–323
characters

in different script systems 318
elements of a string 60

child script objects 271–286
classes

of operands 161–168
of parameters 78, 225

Class value class 41
Clipboard property 318
Closable property 323
Close command 87–88
coercion

of parameters 81
of values 67–70

coercion operator 167
Comes After operator 164
Comes Before operator 164
command definitions

AppleScript
Copy 88–91

Count 92–96
Error 210–212
Get 100–102
Run 110–112
Set 113–117

Scriptable Text Editor 345–355
Copy 347
Cut 348
Data Size 349
Duplicate 349
Make 350
Move 351
Open 351
Paste 351
Revert 352
Save 353
Select 354

standard application commands
Close 87–88
Copy 88–91
Count 92–96
Data Size 97–98
Delete 98
Duplicate 99
Exists 99–100
Get 100–102
Launch 103–104
Make 105–106
Move 106–107
Open 107–108
Print 108–109
Quit 109–110
Save 112–113
Set 113–117

using 77–80
command handlers 241–252

in script applications 243–252
in stay-open script applications 247–250

commands 17–18, 71–117
AppleScript 73–74, 84–117
application 72–73, 84–117
defined 71
handlers for. See command handlers
objects that can respond to 122

I N D E X

373

commands (continued)
parameters of 78–79
Scriptable Text Editor 345–354
scripting addition 23, 74–75
summarized 289–293
syntax of 78
targets of 71
user-defined 76, 221–240
waiting for completion of 215, 217

comments 26–27
comparison operators 163–165, 298
comparisons 213
compiling a script 30
complete reference 124
completion of commands 215, 217
composite values 33
compound statements 16
concatenation operator (&) 163, 177–178
conditional statement. See If statements
Considering statements 213–217
constants, listed 305
Constant value class 42
constructor functions 270, 285–286
containers 123–124, 296
containment operators 165–166, 297
Contains operator 165, 175–176
Contents property 58, 154, 323
continuation characters 25
Continue statements 277–283

passing commands to applications
with 280–283

control statements 183–218
defined 183
listed 300
nested 184

Copy command
in assignment statements 22, 150
defined 88–91
definition 347
with script objects 283–286

Count command 50, 92–96
current application reserved

words 281–283
current directory 144

current script 76
customizing applications 7, 11
Cut command 348

D

data sharing 117, 154, 283
Data Size command 97–98, 349
Data value class 43, 81
date-time arithmetic 180–181
Date value class 43–47
default object 185, 186
default target 18
delegation 277–286
Delete command 98
diacriticals attribute 215
dialects

defined 24
introduced 5

dictionaries 18–20
defined 19
Scriptable Text Editor 19, 185, 313–355

direct parameter 72, 78
division operator (÷) 167
div operator 167
Document object class 323–328
Does Not Come After operator 165
Does Not Come Before operator 164
Does Not Contain operator 166
Does Not Equal operator 164
double-quote character 62
Duplicate command 99, 349

E

eighth reserved word 131
elements

of objects 120
of text objects 314
of values 37

Else clause 191

I N D E X

374

Else If clause 191
empty list 49
end reserved word 132
Ends With operator 165, 173–174
Equal operator 163, 168–172
Error command 210–212
error handlers 204–212

defining 206–209
error messages 204–212, 357–362

defined 79
Scriptable Text Editor 355

errors
Apple event 205, 359–360
Apple Event Registry 205, 361
AppleScript 205, 362
application 205
Operating System 205, 358
resignaling in scripts 211–212
returned by commands 79
script 206
Scriptable Text Editor 355
signaling in scripts 210–212
types of 205–206

evaluation
defined 21
of expressions 149
of expressions containing operators 162

"event timed out" error message 217
Every Element reference form 127–128
every reserved word 127
Exists command 99–100
Exit statements 194, 204
explicit Run handlers 244
exponent operator (^) 167
expressions 21–23, 149–181

Boolean 190
evaluation of 149, 162
literal 36

F

fifth reserved word 131
filename 329

File object class 328–329
files, specifying 143–145
file versus alias 144–145
Filter reference form 129–143
first reserved word 131
Floating property 324
Font property 321
fourth reserved word 131
from reserved word 136
Frontmost property 318
front of reserved words 139
front reserved word 131, 132

G

Get command 100–102
Getting Started With AppleScript xv, xviii
given parameter label 230–234
global variables 155, 158

persistence of 255, 259–260
scope of 252–264

Greater Than operator 164, 172–173
Greater Than Or Equal To operator 164

H

handlers 221–264, 267
for application commands 241–242

in script applications 243–252
defined 221
for errors 204–212
for Idle command 248
interrupting 250
for Open command 246–247
for Quit command 249
for Run command 243–246
scope of identifiers declared within 263–264
for stay-open script applications 247–250
syntax summary 302
for user-defined commands 221–240

hyphens attribute 215

I N D E X

375

I, J, K

identifiers 27–28, 150
Idle command, and stay-open script

applications 248
ID reference form 130–131
id reserved word 130
If statements 190–193

compound 193
simple 192

Ignoring statements 213–217
implicit Run handlers 244
in back of reserved words 139
Index property 324
Index reference form 131–133
index reserved word 131
infinite loop 194
in front of reserved words 139
inheritance 271–286
initializing script objects 266, 269–271
in reserved word in references 123
insertion point object 80

and Index reference form 132
and Relative reference form 139

Insertion Point object class 329–331
instance variables 267
Integer value class 47–48
integral division operator 167
integrating applications 7–8
Is Contained By operator 166, 175–176
Is Equal To operator 163
Is Not Contained By operator 166
Is Not Equal To operator 168–172
Is Not Greater Than operator 165
Is Not Less Than operator 164
Is Not operator 164
Is operator 163
items 48
it variable 186–188

L

labeled parameters 78, 223
last reserved word 131
Launch command 103–104
Length property 315, 321

of a list 49
of a record 55
of a string 60, 64

Less Than operator 164, 172–173
Less Than Or Equal To operator 165
library 226
lists

adding values to 51
merging 51

List value class 48–51
literal expressions 36
Load Script command 226
local variables 155, 270

scope of 252–264
location parameters 80, 140
logical operators 163, 168, 297
looping variable 195, 196, 201–203
loops. See Repeat statements
lowercase letters 28, 214

M

macro languages 10
Make command 105–106, 350
merging lists 51
messages. See Apple events
methods 267
me variable 186–188, 224, 279–280
Middle Element reference form 133
middle reserved word 133
minus symbol (–) 167
Modal property 324
Modified property 324
mod operator 167
Move command 106–107, 351
multiplication operator 166
my reserved word 186–188, 224, 279–280

I N D E X

376

N

named reserved word 134
Name property 187, 318, 324
Name reference form 134
nested control statements 184
networks

AppleTalk 146
zones of 148

ninth reserved word 131
non-English text 66
not operator 168
Number value class 52–53

O

object class definitions
Scriptable Text Editor

Application 318–320
Character 321–323
Document 323–328
File 328–329
Insertion Point 329–331
Paragraph 331–333
Selection 334–336
Text 336–338
Text Item 339–341
Text Style Info 341–342
Window. See Document object class
Word 342–344

using 119–122
object-oriented design 265
objects 17–18, 119–148

in applications 119
commands that act on 122
default 185, 186
elements of 120
properties of 120
script

child 271–286
initializing 269–271
parent 268, 271–286
sending commands to 268–269

Scriptable Text Editor 318–344
text 313–317
user-defined. See script objects
values of 161

Offset property 75, 315, 321
Offset scripting addition command 75
Off Styles property 315–317
of reserved word in references 123
on error reserved words 207
on reserved word 229, 236
On Styles property 315–317
Open command 107–108, 351

handlers for, in script applications 246–247
operands, defined 161
Operating System errors 205, 358
operations 21, 161–181
operators 21–23, 37, 161–179

A Reference To 153–154
arithmetic 166–167, 297
binary 21
comparison 163–165, 298
containment 165–166, 297
defined 21
listed, by category 297
listed, with descriptions 163–168
logical 163, 168, 297
precedence 178–179
unary 21

optional parameters 79
order of operations. See precedence
Or operator 163

P

paragraph element of a string 60
Paragraph object class 331–333
parameters 80–82

for application commands 78–79
coercion of 81
in Continue statements 277
defined 78
direct 72, 78

I N D E X

377

parameters (continued)
labeled 78, 223
location 80, 140
optional 79
patterned 238–239
positional 223
raw data in 81
required 79

parameter variables 270, 277
parentheses xix
Parent property 271

and current application 281–283
parent script objects 268, 271–286
partial references 124, 185
partial result parameter 210
Paste command 351
patterned parameters 238–239
persistence

of global variables 255, 259–260
of script properties 254, 259–260

placeholders xix, 307–311
plural object names 127
plus symbol (+) 166
positional parameters 223
Position property 324, 327–328
possessive object names 124
precedence

of attributes 216
of operations 178–179

predefined variables
introduced 156
listed 305

Print command 108–109
properties

of AppleScript 158–160
of objects 120
scope of 252–264
of script objects 267
of scripts 156–158
of values 36

Property reference form 135
property reserved word 157
prop reserved word 157
punctuation attribute 215

Q

Quit command 109–110
handlers for, in stay-open script

applications 249

R

Range reference form 136–139
Real value class 53–54
recordable applications 11
Record button 10
Record value class 54–57
recursion 225–226
reference forms 125–143

Arbitrary Element 126–127
defined 125
Every Element 127–128
Filter 129–143
ID 130–131
Index 131–133
Middle Element 133
Name 134
Property 135
Range 136–139
Relative 139–140
and values 38

reference reserved word. See A Reference To
operator

references 122–148
complete 124
defined 122
as expressions 160–161
to files and applications 143–148
partial 124, 185

Reference value class 57–59
ref reserved word. See A Reference To operator
Relative reference form 139–140
remainder operator 167
Repeat statements 194–204

Repeat (forever) 197
Repeat (number) Times 198

I N D E X

378

Repeat statements (continued)
Repeat Until 200
Repeat While 199
Repeat With (loopVariable) From (startValue)

to (stopValue) 201–202
Repeat With (loopVariable) In (list) 202–203

required parameters 79
Required suite, of application commands 85
reserved words 20
Resizable property 325
Rest Of property 49
results 79, 82–83
result variable 83
result window 150
return character in strings 62
Return statements 222, 228, 240
Reverse property 49
Revert command 352
Run command 110–112

handlers for. See Run handlers 243
and Launch command 104

Run handlers
in script applications 243–246
in script objects 267–269

running scripts 9

S

's notation 124, 296
sample application xvii
Save command 112–113, 353
saving parameter 87, 109
scope, of variables and properties 252–264
scriptable applications 11
Scriptable Text Editor

commands 345–354
dictionary 19, 185, 313–355
and non-Roman script systems 317–318
object class definitions 318–344

script applications 243–252
calling 251–252
interrupting handlers in 250

script codes, and AppleScript 317

Script Editor 5, 30
script errors 206
scripting additions 23

introduced 74–75
in With Timeout statements 217

script objects 265–286
child 271–286
defined 265
initializing 266, 269–271
introduced 23
parent 268, 271–286
scope of identifiers declared within 258–262
sending commands to 268–269

script properties 156–158, 304
persistence of 254, 259–260
scope of 252–262

script reserved word 267
scripts

defined 3
running 9
scope of identifiers declared at top level

of 254–257
script systems and AppleScript 317–318
second[s] reserved word 218
second reserved word 131
Select command 354
Selection object class 334–336
Selection property 319, 325
Set command

in assignment statements 22, 150
defined 113–117
scope of variables set with 252–264
with script objects 283–284

seventh reserved word 131
short-circuiting, during evaluation 163
simple statements 16
simple values 33
sixth reserved word 131
Size property 321
slash symbol (/) 167
some reserved word 126
special characters

in identifiers 28
in strings 62

I N D E X

379

Standard suite, of application commands 85
Starts With operator 165, 173–174
statements 14–17

compound 16
defined 14
simple 16

storing values in variables 150
strings, special characters for 62
String value class 60–64
Styled Text value class 64–66
Style property 315–317, 321
subroutines 221–240

calling
labeled parameters 230–232
no parameters 223
positional parameters 236–240

defined 221
defining

labeled parameters 229–234
no parameters 223
positional parameters 235–239

libraries of 226
subtraction of date and number values 180–181
subtraction operator 167
suites 314
synonyms

for operators 143, 163–168
for value classes 38

syntax conventions xix
syntax description, defined 78

T

Tab character in strings 62
target 71
targets 18
Tell statements 72, 185–190

compound 189–190
introduced 16
simple 188

tenth reserved word 131
terminating

handler execution 240
Repeat statement execution 204

tests 190
text

element of a string 60
non-English 66
styled 64–66
synonym for string 66

Text Item Delimiters property 319
of AppleScript 158–160

Text Item object class 339–341
Text object class 336–338
text objects 313–317
Text Style Info object class 341–342
text styles 315–317
Text value class 66
the, use of in AppleScript 16
third reserved word 131
through reserved word 136
thru reserved word 136
timeout. See With Timeout statements
Titled property 325
to reserved word 229, 236
try reserved word 207
Try statements 204–209

defined 206
typographic conventions xix

U

unary operators 21
Uniform Styles property 315–317, 322
uppercase letters 28, 214
user-defined commands 76, 221–240
user-defined objects. See script objects

I N D E X

380

V

value classes 38–67
Boolean 40
Class 41
Constant 42
Data 43, 81
Date 43–47
default, returned by Get command 122
defined 33
Integer 47–48
List 48–51
Number 52–53
Real 53–54
Record 54–57
Reference 57–59
String 60–64
Styled Text 64–66
summary of 39
Text 66
using definitions of 33–38

values 33–70
characteristics of 33–38
coercing 38, 67–70
composite 33
defined 20
elements of 37
of objects 161
properties of 36
responses to commands 37
simple 33

variables 22–23, 150–156
assignment statements 151, 304
defined 150
global 155, 158, 252–264
instance 267
local 155, 252–264, 270
looping 195, 196, 201–203
predefined 156

listed 305
scope of 155, 252–264

Version property 319
vertical bars xix
Visible property 325

W, X, Y

where reserved word 129
white space attribute 214
whose reserved word 129
Window object class. See Document object class
With clause 231
Without clause 231
With Timeout statements 217–218
With Transaction statements 219–220
word element of a string 61
Word object class 342–344
wrapper method 277

Z

zones, AppleTalk 146
Zoomable property 325
Zoomed property 325

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from
the text and graphic files. Line art was
created using Adobe™ Illustrator.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS
Sean Cotter, Mitchell Gass, and
Pegi Wheeler

DEVELOPMENTAL EDITORS
Jeanne Woodward and Beverly Zegarski

ILLUSTRATOR
Deborah Dennis

PRODUCTION EDITOR
Rex Wolf

Special thanks to William Cook and
Warren Harris.

Acknowledgments to Kathleen Carter,
Dan Clifford, Sue Dumont, Ron Karr,
Kazuhisa Ohta, Donald Olson, Jon Pugh,
Brett Sher, Peter Sparks, and the entire
AppleScript team.

